Applied Biochemistry and Biotechnology

, Volume 57, Issue 1, pp 157–170

Conversion of lignocellulosics pretreated with liquid hot water to ethanol

  • G. Peter van Walsum
  • Stephen G. Allen
  • Mark J. Spencer
  • Mark S. Laser
  • Michael J. Antal
  • Lee R. Lynd
Session 1 Thermal, Chemical, and Biological Processing


Lignocellulosic materials pretreated using liquid hot water (LHW) (220°C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) usingSaccharomyces cerevisiae in the presence ofTrichoderma reesei cellulase. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (−60 +70 mesh) resulted in 90% conversion to ethanol in 2–5 d at enzyme loadings of 15–30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth ofS. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220°C.

Index Entries

Liquid hot water pretreatment SSF inhibition particle size reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lynd, L. R., Cushman, J. H., Nichols, R.J., and Wyman, C. E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  2. 2.
    Converse, A. O. (1993), inBioconversion of Forest and Agricultural Residues, (Saddler, J. N., ed.), CAB International, Wallingford, UK, pp. 93–106.Google Scholar
  3. 3.
    Chem Systems (1990), Technical and economic evaluation: wood to ethanol process. National Renewable Energy Laboratory, Golden CO.Google Scholar
  4. 4.
    Stone, K. and Lynd, L. R. (1995),Appl. Biochem. Biotechnol. 45/46, 569–584.CrossRefGoogle Scholar
  5. 5.
    McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, (Himmel, M. E., Baker, J. O., and Overend, R. P., eds.), ACS Symposium Series 566, Washington, DC, pp. 292–324.Google Scholar
  6. 6.
    McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, (Himmel, M. E., Baker, J. O., and Overend, R. P., eds.), ACS Symposium Series 566, Washington, DC, pp. 411–437.Google Scholar
  7. 7.
    Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994),Enzyme Microb. Technol. 16, 1002.CrossRefGoogle Scholar
  8. 8.
    Wyman, C. E. and Goodman, B. J. (1993), inOpportunities for Innovation in Biotechnology, (Busche, R., ed.), US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
  9. 9.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991),Appl. Biochem. Biotechnol. 30, 43–59.CrossRefGoogle Scholar
  10. 10.
    Kohlmann, K., Westgate, P. J., Weil, J., and Ladisch, M. R. (1993), SAE Technical Article Series, 932251. SAE, Warrendale, PA.Google Scholar
  11. 11.
    Lynd, L. R. (1990)Appl. Biochem. Biotechnol. 24/25, 695–719.CrossRefGoogle Scholar
  12. 12.
    Wright, J. (1988),Chem. Eng. Prog. August, 62–74.Google Scholar
  13. 13.
    Altherum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–1948.Google Scholar
  14. 14.
    Bealle, D. S., Ohta, K., and Ingram, I. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  15. 15.
    Chen, Z. D. and Ho, N. W. Y. (1993),Appl. Biochem. Biotechnol. 39, 135–147.CrossRefGoogle Scholar
  16. 16.
    Zhung, M., Eddy, C., Deand, K., Finkelstein, M., and Picatagio, S. (1995),Science 267, 240–243.CrossRefGoogle Scholar
  17. 17.
    Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report 11: Evaluation of a wood-to-ethanol process. (1993), DOE/EP-0004, US Department of Energy, Washington, DC.Google Scholar
  18. 18.
    Mes-Hartree, M. and Saddler, J. N. (1983),Biotechnol. Lett. 5(8), 531–536.CrossRefGoogle Scholar
  19. 19.
    Forsberg, C.W., Schellhorn, H. E., Gibbons, L. N., Maine, F., and Mason, E. (1988),Biotechnol. Bioeng. 28, 176–184.CrossRefGoogle Scholar
  20. 20.
    Tran, A. V. and Chambers, R. P. (1986),Enzyme Microb. Technol. 8, 439–444.CrossRefGoogle Scholar
  21. 21.
    Fraser, F. R. and McKaskey, T. A. (1991),Enzyme Microb. Technol. 13, 110–115.CrossRefGoogle Scholar
  22. 22.
    Ooshima, H., Burns, D. S., and Converse, A. O. (1990),Biotechnol. Bioeng. 36, 446–452.CrossRefGoogle Scholar
  23. 23.
    Thompson, D.N., Chen, H.-C., and Grethlein, H. E. (1991),Bioresource Technol. 39, 155–163.CrossRefGoogle Scholar
  24. 24.
    Torget, R., Himmel, M. E., and Grohmann, K. (1991),Bioresource Technol. 35, 239–246.CrossRefGoogle Scholar
  25. 25.
    Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/ 29, 75–86.CrossRefGoogle Scholar
  26. 26.
    Beltrame, P. L., Carniti, P., Visciglio, A., Focher, B., and Marzetti, A. (1991),Bioresource Technol. 39, 165–171.CrossRefGoogle Scholar
  27. 27.
    Brownell, H. H. and Saddler, J. N. (1987),Biotechnol. Bioeng. 29, 228–235.CrossRefGoogle Scholar
  28. 28.
    Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991),Bioresource Technol. 35, 23–32.CrossRefGoogle Scholar
  29. 29.
    Jollez, P., Chornet, E., and Overend, R. P. (1994), inAdvances in Thermochemical Biomass Conversion, vol. 2. (Bridgewater, A. V., ed.), Chapman and Hall, London, pp. 1659–1669.Google Scholar
  30. 30.
    Montane, D., Salvado, J., Farriol, X., and Chornet, E. (1993),Biomass Bioenergy 4, 427–437.CrossRefGoogle Scholar
  31. 31.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992),Appl. Biotechnol. Bioeng. 34/35, 37–48.CrossRefGoogle Scholar
  32. 32.
    Clark, T. A. and Mackie, K. L. (1987)J. Wood Chem. Technol. 7, 373–403.CrossRefGoogle Scholar
  33. 33.
    Schell, D., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. (1991),Appl. Biochem. Biotechnol. 28/29, 87–97.CrossRefGoogle Scholar
  34. 34.
    Dale, B. E. (1985),Ann. Rep. on Fermentation Processes 8, 299–323.Google Scholar
  35. 35.
    Grethlein, H. E. and Dill, T. (1993), The cost of ethanol produced from cellulosic biomass a comparison of selected alternative processes. Report to the USDA for Specific Cooperative Agreement No. 58-1935-2-050.Google Scholar
  36. 36.
    Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E., and Dale, B. E. (1992),Appl. Biochem. Biotechnol. 34/35, 5–21.CrossRefGoogle Scholar
  37. 37.
    Holtzapple, M. T. and Humphrey, A. E. (1984),Biotechnol. Bioeng. 26, 670–676.CrossRefGoogle Scholar
  38. 38.
    Kim, S. B. and Lee, Y. Y. (1987),Biotechnol. Bioeng. Symp. 17, 71–84.Google Scholar
  39. 39.
    Dale, B. E., Henk, L. L., and Shiang, M. (1985),Dev. Ind. Micobiol. 26(13), 223–233.Google Scholar
  40. 40.
    Azuma, J.-L, Tanaka, F., and Koshijima, T. (1984),J. Ferment. Technol. 62(4), 377–384.Google Scholar
  41. 41.
    Koullas, D. P., Christakopolous, P., Kekos, D., Macris, B. J., and Koukios, E. G. (1992),Biotechnol. Bioeng. 39, 113–116.CrossRefGoogle Scholar
  42. 42.
    Schell, D. and Duff, B. (1994), Review of pilot plant programs for conversion of lignocellulosic biomass to ethanol. Alternative Fuels Division, National Renewable Energy Laboratory, Golden CO.Google Scholar
  43. 43.
    Allen, S. G., Kam, L. C., Zemann, A. J., and Antal, M. J. (1996), Macroscale fractionation of sugar cane with hot compressed liquid water by the aquasolv process.Ind. Eng. Chem. Res. (accepted for publication).Google Scholar
  44. 44.
    Bobleter, O., Vidotti, R., Zemann, A., and Prutsch, W. (1990), in 5th E.C. Conference, vol. 2,Conversion and Utilization of Biomass, Grassi, G., Gosse, G., and dos Santos, G., eds., Elsevier Applied Science, London pp. 2.31–2.37.Google Scholar
  45. 45.
    Aronovsky, S. I. and Gortner, R. A. (1930),Ind. Eng. Chem. 22, 264.CrossRefGoogle Scholar
  46. 46.
    Bouchard, J., Nguyen, T. S., Chornet, E., and Overend, R. P. (1991),Bioresource Technol. 36, 121.CrossRefGoogle Scholar
  47. 47.
    Walch, E., Zemann, A., Schinner, F., Bonn, G., and Bobleter, O. (1992),Bioresource Technol. 39, 173–177.CrossRefGoogle Scholar
  48. 48.
    Overend, R. P. and Chornet, E. (1987),Phil. Trans. R. Soc. Lond. A 321, 523–526.CrossRefGoogle Scholar
  49. 49.
    Mok, W. S.-L. and Antal, M. J. (1992),Ind. Eng. Chem. Res. 31, 1157–1161.CrossRefGoogle Scholar
  50. 50.
    Hormeyer, H. F., Bonn, G., Kim, D. W., and Bobleter, O. (1987),J. Wood Chem. Technol. 7(2), 269.CrossRefGoogle Scholar
  51. 51.
    Hormeyer, H. F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., and Aubert, J.-P. (1988)Appl. Microbiol. Biotechnol. 29, 528–535.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • G. Peter van Walsum
    • 1
  • Stephen G. Allen
    • 2
  • Mark J. Spencer
    • 2
  • Mark S. Laser
    • 1
  • Michael J. Antal
    • 2
  • Lee R. Lynd
    • 1
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Hawaii Natural Energy InstituteUniversity of Hawaii at ManoaHonolulu

Personalised recommendations