Advertisement

Blow-ups of Smooth Toric 3-Varieties Werner Burau to his 80th birthday

  • G. Ewald
Article

Keywords

Toric Variety Elementary Transformation Polygonal Path Critical Edge Projective Toric Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ash,D. Mumford,M. Rapoport, Y, Tai, Smooth Compactification of Locally Symmetric varieties. Math. Sci. Press 1975.Google Scholar
  2. [2]
    M. F. Atiyah, Angular Momentum, Convex Polyhedra and Algebraic Geometry. Proceedings of the Edinbourgh Math. Society (1983) 26, 121–138.MathSciNetzbMATHGoogle Scholar
  3. [3]
    D. N. Bernstein, The number of roots of a system of equations. Funct. Anal. Appl. 9 (1976), 183–185.CrossRefzbMATHGoogle Scholar
  4. [4]
    V. I. Danilov, The Geometry of Toric Varieties. Uspekhi Mat. Nauk 33 (1978), 85–134. Russian Math. Surveys 33 (1978), 97-154.MathSciNetzbMATHGoogle Scholar
  5. [5]
    V. I. Danilov, Birational Geometry of Toric 3-Folds. Math. Uss R Izvestiya 21 (1983) 269–280.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Demazure, Sous-groupes algébraiques de rang maximum du groupe de Cremona, Ann. Sci. Ecole Norm. Sup (4) 3 (1970), 507–588.MathSciNetzbMATHGoogle Scholar
  7. [7]
    F. Ehlers, Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann. 218 (1975), 127–156.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. Ewald, Spherical Complexes and Nonprojective Toric Varieties. Discrete & Computational Geometry 1 (1986), 115–122.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Kempf,F. Knudson,D. Mumford,B. Saint-Donat, Toroidal Embeddings I. Lecture Notes in Math. Springer 1973.Google Scholar
  10. [10]
    T. Mabuchi, Einstein-Kähler-Forms, Futaki-Invariants and Convex Geometry on Toric Fano Varieties. To appear.Google Scholar
  11. [11]
    T. Oda, Torus Embeddings and Applications. Tata Institute, Bombay 1978.zbMATHGoogle Scholar
  12. [12]
    T. Oda, K. Miyake, Almost homogeneous algebraic varieties under algebraic torus action. Manifolds. Tokyo 1973 (Hattori, ed.) Univ. of Tokyo Press 1975, 373–381.zbMATHGoogle Scholar
  13. [13]
    H. Rademacher, Lectures on Elementary Number Theory, New York 1964.Google Scholar
  14. [14]
    R. P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), 236–238.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Teissier, Bonnesen-Type Inequalities in Algebraic Geometry I: Introduction to the problem. Seminar on Differential Geometry. Princeton Univ. Press 1982, 85–105.Google Scholar

Copyright information

© Mathematische Seminar 1987

Authors and Affiliations

  • G. Ewald
    • 1
  1. 1.Institut für Mathematik der Ruhr-UniversitätBochum 1Germany

Personalised recommendations