Advertisement

Means on dyadic symmetrie sets and polar decompositions

  • J. lawson
  • Y. Lim
Article

Abstract

In this paper we develop the theory of the geometric mean and the spectral mean on dyadic symmetric sets, an algebraic generalization of symmetric spaces of noncompact type, and apply them to obtain decomposition theorems of involutive systems. In particular we show for involutive dyadic symmetric sets: every involutive dyadic symmetric set admits a canonical polar decomposition with factors the geometric and spectral means.

2000 Mathematics Subject Classification

51F15 20N05 20F50 20K25 

Key words and phrases

symmetric space symmetric set midpoint mean loop spectral mean polar decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Ando,Topics on Operator Inequalities Lecture Notes Hokkaido Univ., Sapporo, 1978.zbMATHGoogle Scholar
  2. [2]
    M. Fiedler andV. Pták, A new positive definite geometric mean of two positive definite matrices.Linear Algebra Appl. 251 (1997), 1–20.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Foguel,M. Kinyon, andJ. Phillips, On twisted subgroups and loops of odd order. Preprint.Google Scholar
  4. [4]
    T. Foguel andA. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups.J. Group Theory 3 (2000), 27–46.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. Glauberman, On loops of odd order I.J. Algebra 1 (1964), 374–396.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Karzel, Recent developments on absolute geometries and algebraization.Discrete Math. 208/209 (1999), 387–409.CrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Kiechle,Theory of K-Loops. Lecture Notes in Mathematics 1778, Springer, Berlin, 2002.Google Scholar
  8. [8]
    M. Kinyon, Global left loop structures on spheres.Comment. Math. Univ. Carolin. 41 (2000), 325–346.zbMATHMathSciNetGoogle Scholar
  9. [9]
    F. Kubo andT. Ando, Means of positive linear operators.Math. Ann. 246 (1980), 205–224.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. D. Lawson andY. Lim, The geometric mean, matrices, metrics, and more.Amer. Math. Monthly 108 (2001), 797–812.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    -, Symmetric sets with midpoints and algebraically equivalent theories. To appear inResults in Mathematics. Google Scholar
  12. [12]
    Y. Lim, Geometric means on symmetric cones.Arch. der Math. 75 (2000), 39–45.zbMATHCrossRefGoogle Scholar
  13. [13]
    -, Metric and spectral geometric means on symmetric cones. Submitted.Google Scholar
  14. [14]
    O. Loos,Symmetric spaces, I: General Theory. Benjamin, New York, Amsterdam, 1969.zbMATHGoogle Scholar
  15. [15]
    M. Moakher, A differential geometric approach to the arithmetic and geometric means of operators in some symmmetric spaces. Preprint.Google Scholar
  16. [16]
    G. D. Mostow, Some new decomposition theorems for semi-simple groups.Memoirs of the AMS. Vol.14 (1955), 31–54.zbMATHMathSciNetGoogle Scholar
  17. [17]
    N. Nobusawa, On symmetric structure of a finite set.Osaka J. Math. 11 (1974), 569–575.zbMATHMathSciNetGoogle Scholar
  18. [18]
    A. C. Thompson, Geometric means of ellipsoids and other convex bodies, III International Conference in “Stochastic Geometry, Convex Bodies and Empirical Measures”, Part II (Mazara del Vallo, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No.65, part II (2000), 179–191.Google Scholar
  19. [19]
    A. A. Ungar, Midpoints in gyrogroups.Found. Phys. 26 (1996), 1277–1328.CrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Upmeier,Symmetric Banach Manifolds and Jordan C*-algebras. North Holland Mathematics Studies, 1985.Google Scholar

Copyright information

© Mathematische Seminar 2004

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  2. 2.Department of MathematicsKyungpook National UniversityTaeguKorea

Personalised recommendations