Advertisement

Line bundles and syzygies of trigonal curves

  • G. Martens
  • F. -O. Scheeyer
Article

Keywords

Line Bundle Linear Span Global Section Hyperplane Section Linear Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [A-C-G-H]
    ?. Arbarello,M. Coenalba,P. A. Griffiths,J. Harris, Geometry of algebraic curves I, Springer 1985.Google Scholar
  2. [B]
    E. Bertini, Introduzione di geometria proiettiva degli iperspaci, Messina 1923.Google Scholar
  3. [B-E, 1]
    D. A. Buchsbaum,D. Eisenbud, What makes a complex exact? J. Alg.25 (1973), 259–268.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [B-E, 2]
    D. A. Buchsbaum, D. Eisenbud, Generic free resolutions and a family of generically perfect ideals. Adv. Math.18 (1975), 245–301.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [B-E, 3]
    D. A. Buchsbaum, D. Eisenbud, Algebra structures for finite free resolutions..., Amer. J. Math.99 (1977), 447–485.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [C]
    E. B. Christoffel, Über die kanonische Form der Riemannschen Integrale erster Gattung. Ann. di mat. (2),9 (1878), 240–301.CrossRefGoogle Scholar
  7. [Ge]
    W.-D. Geyer, Die Theorie der algebraischen Punktionen einer Veränderlichen nach Dedekind-Weber. In: W. Scharlau: Richard Dedekind 1831/ 1981. Vieweg 1981, 109–133.Google Scholar
  8. [G]
    M. Green, Koszul cohomology and the geometry of projective varieties. J. Differ. Geom.19 (1984), 125–171.Google Scholar
  9. [Gr]
    A. Grothendieck, Théorèmes de dualité pour les faisceaux algebriques cohérent. Seminaire Bourbaki 1957, Exposé 149, Secrétariat mathématique Paris 5.Google Scholar
  10. [G-L]
    M. Green, R. Lazaesfeld, On the projective normality of complete linear series on an algebraic curve. Invent, math.83 (1986), 73–90zbMATHCrossRefGoogle Scholar
  11. [H]
    J. Harris, A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Pisa8 (1981), 35–68.zbMATHGoogle Scholar
  12. [Har]
    R. Hartshorne, Algebraic geometry. Springer 1977.Google Scholar
  13. [H-L]
    K. Hensel,G. Landsberg, Theorie der algebraischen Funktionen einer Variablen. Teubner 1902, 31. Vorlesung.Google Scholar
  14. [L-M, 1]
    H. Lange, G. Martens, Normal generation and presentation of line bundles of low degree on curves. J. r. a. Math.356 (1985), 1–18.zbMATHMathSciNetGoogle Scholar
  15. [L-M, 2]
    H. Lange, G. Martens, Normal generation of line bundles of degree 2p — 2 on curves. Abh. Math. Sem. Univ. Hamburg55 (1985), 69–73zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Mar]
    A. Maroni, Le serie lineari speciali sulle curve trigonali. Ann. di mat. (4),25 (1946), 341–354.CrossRefMathSciNetGoogle Scholar
  17. [Mum]
    D. Mumford, Prym varieties. I. Appendix: A theorem of Martens. In: Contributions to Analysis, 1974, 348–350.Google Scholar
  18. [P]
    K. Petri, Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen, Math. Ann.88 (1923) 242–289.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Sch]
    F.-O. Schreyer, Syzygies of canonical curves and special linear series. Math. Ann.275 (1986), 105–137zbMATHCrossRefMathSciNetGoogle Scholar
  20. [W]
    H. Weyl, Classical groups. Princeton University Press, 1946.Google Scholar

Copyright information

© Mathematische Seminar 1986

Authors and Affiliations

  • G. Martens
    • 1
  • F. -O. Scheeyer
    • 2
  1. 1.Mathematisches InstitutUniversität ErlangenErlangen
  2. 2.Fachbereich MathematikUniversität KaiserslauternKaiserslautern

Personalised recommendations