On the local theory of signatures and reduced quadratic forms

  • Manfred Knebusch


Quadratic Form Prime Ideal Valuation Ring Congruence Class Quadratic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. Ahrens andI. Kaplansky, Topological representations of algebras. Trans. Amer. Math. Soc.63, 457–481 (1948).CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Baeza, Quadratic forms over semilocal rings. Lecture Notes Math. 655. Springer, Berlin, Heidelberg, New York, 1978.Google Scholar
  3. [3]
    R. Baeza andM. Knebusch, Annullatoren von Pfisterformen über semilokalen Ringen. Math. Z.140, 41–62 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Becker andL. Bröcker, On the description of the reduced Witt ring. J. Algebra52, 328–346 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    E. Becker andE. Köpping, Reduzierte quadratische Formen und Semiordnung reeller Körper. Abh. Math. Sem. Univ. Hamburg46, 143–177 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. BouRBAki, Algébre commutative. Chap. V, Act. Sci. Ind. 1308. Hermann, Paris, 1964.Google Scholar
  7. [7]
    L. Bröcker, Zur Theorie der quadratischen Formen über formalreellen Körpern. Math. Ann.210, 233–256 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    L. Bröcker, Characterization of fans and hereditarily Pythagorean fields. Math. Z.151, 149–163 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    L. Bröcker, Positiv bereiche in kommutativen Ringen, to appear.Google Scholar
  10. [10]
    R. Brown andM. Marshall, The reduced theory of quadratic forms, Rocky Mt. J., to appear.Google Scholar
  11. [11.
    T. Craven, A. Rosenberg andR. Ware, The map of the Witt ring of a domain into the Witt ring of its field of fractions. Proc. Amer. Math. Soc.51, 25–30 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Dress, The weak local global principle in algebraic K-theory. Communications in Algebra3, 615–661 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Grothendieck andJ. Dieudonné, Elements de géométrie algébrique. Chap. I. Publ. Math. Inst. Hautes Et. Sci. No.4 (1960).Google Scholar
  14. [14]
    B. Jacob, On the structure of pythagorean fields, to appear.Google Scholar
  15. [15]
    T. Kanzaki andK. Kitamura, On prime ideals of a Witt ring over a local ring. Osaka J. Math.9, 225–229 (1972).zbMATHMathSciNetGoogle Scholar
  16. [16]
    J. L. Kleinstein andA. Rosenberg, Signatures and semisignatures of abstract Witt rings and Witt rings of semilocal rings. Can. J. Math.30, 872–895 (1978).zbMATHMathSciNetGoogle Scholar
  17. [17]
    J. L. Kleinstein andA. Rosenberg, Succinct and representational Witt rings, to appear.Google Scholar
  18. [18]
    M. Knebusch, Symmetric bilinear forms over algebraic varieties. Lecture Notes, Conference on Quadratic Forms 1976. Queen’s Papers pure appl math. No.46, 103–283. Queen’s Univ. Kingston, 1977.Google Scholar
  19. [19]
    M. Knebusch, Generalization of a theorem of Artin-Pfister, and related topics. J. Algebra36, 46–67 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    M. Knebusch, Real closures of commutative rings I. J. reine angew. Math.274/275, 61–89 (1975).MathSciNetGoogle Scholar
  21. [21]
    M. Knebusch, Remarks on the paper “Equivalent topological properties of the space of signatures of a semilocal ring” by A. Rosenberg and R. Ware. Publ. Math. Univ. Debrecen24, 181–188 (1977).zbMATHMathSciNetGoogle Scholar
  22. [22]
    M. Knebusch, Signatures on Frobenius extensions, in: Number Theory and Algebra, ed. by H. Zassenhaus, pp. 167–186. Academic Press, New York, San Francisco, London, 1977.Google Scholar
  23. [23]
    M. Knebusch andM. Kolster, Wittringe. Regensburger Trichter Band 14, Fachbereich Mathematik Univ. Regensburg, 1978.Google Scholar
  24. [24]
    M. Knebusch, A. Rosenberg andR. Ware, Structure of Witt rings and quotients of abelian group rings. Amer. J. Math.94, 119–155 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    M. Knebusch, A. Rosenberg andR. Ware, Signatures on semilocal rings. J. Algebra26, 208–250 (1973).zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Knebusch andM. J. Wright, Bewertungen mit reeller Henselisierung. J. reine angew. Math.286/287, 314–321 (1976).MathSciNetGoogle Scholar
  27. [27]
    W. Krull, Allgemeine Bewertungstheorie. J. reine angew. Math.167, 160–196 (1931).Google Scholar
  28. [28]
    S. Lang, The theory of real places. Annals Math.57, 378–391 (1953).CrossRefGoogle Scholar
  29. [29]
    M. Marshall, A reduced theory of quadratic forms, unpublished manuscript.Google Scholar
  30. [301]
    M. Marshall, Classification of finite spaces of orderings. Can. J. Math.31, 320–330 (1979).zbMATHMathSciNetGoogle Scholar
  31. [31]
    M. Marshall, Quotients and inverse limits of spaces of orderings. Can. J. Math.31, 604–616 (1979).zbMATHMathSciNetGoogle Scholar
  32. [32]
    M. Marshall, The Witt ring of a space of orderings. Trans. Amer. Math. Soc.258, 505–521 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Marshall, Spaces of orderings IV. Can. J. Math.32, 603–627 (1980).zbMATHMathSciNetGoogle Scholar
  34. [34]
    J. Milnor andD. Husemoller, Symmetric bilinear forms. Ergebnisse Math. 73. Springer, Berlin, Heidelberg, New York, 1973.Google Scholar
  35. [35]
    A. Prestel, Lectures on formally real fields. Inst. Math. Pure Appl. Rio de Janeiro 1975.Google Scholar
  36. [36]
    A. Prestel, Quadratische Semiordnungen und quadratische Formen. Math. Z.133, 319–342 (1973).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1981

Authors and Affiliations

  • Manfred Knebusch
    • 1
  1. 1.Fakultät für MathematikUniversität RegensburgRegensburg

Personalised recommendations