Special values of triple product L-Functions and nearly holomorphic eisenstein series

Article

References

  1. [1]
    S. Böcherer, Über das Verhalten der Fourierentwicklung bei Liftung von Modulformen.Thesis, Freiburg (1981).Google Scholar
  2. [2]
    —, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen.Math. Z. 183 (1983), 21–46.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    —, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen II.Math. Z. 189 (1985), 81–110.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    —, Über die Fourierkoeffizienten der Siegeischen Eisensteinreihen.Manuscr. math.,45 (1984), 273–288.MATHCrossRefGoogle Scholar
  5. [5]
    —, Über die Funktionalgleichung automorpher L-Funktionen zur Siegeischen Modulgruppe.J. Reine Angew. Math. 362 (1985), 146–168.MATHMathSciNetGoogle Scholar
  6. [6]
    S. Böcherer andS. Raghavan, On Fourier coefficients of Siegel modular forms.J. reine angew. Math. 384 (1988), 80–101.MATHMathSciNetGoogle Scholar
  7. [7]
    S. Böcherer andR. Schulze-Pillot, On a theorem of Waldspurger and on Eisenstein series of Klingen type.Math. Ann. 288 (1990), 361–388.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters.Math. Ann. 217 (1975), 271–285.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Deligne, Valeurs de fonctionsL et périodes d’intégrales. In:Proc. Symp. Pure Math., vol. 33, Part 2. 1979. pp. 313–346.MathSciNetGoogle Scholar
  10. [10]
    B. Diehl, Die analytische Fortsetzung der Eisensteinreihe zur Siegeischen Modulgruppe.J. Reine Angew. Math. 317 (1980), 40–73.MATHMathSciNetGoogle Scholar
  11. [11]
    P. B. Garrett, Pullbacks of Eisenstein series; applications. In: Prog. Math., vol. 46. Birk-häuser, 1984. pp. 114–137.Google Scholar
  12. [12]
    —, Decomposition of Eisenstein series: Rankin triple products.Ann. Math. 125 (1987), 209–235.CrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Ikeda, On the location of poles of the tripleL-functions.Compositio Math. 83 (1992), 187–237.MATHMathSciNetGoogle Scholar
  14. [14]
    V. L. Kalinin, Eisenstein series on the symplectic group.Math. USSR Sbornik 32 (1977), 449–476.CrossRefGoogle Scholar
  15. [15]
    H. Katsurada, An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree 3.Nagoya Math. J. 146 (1997), 199–223.MATHMathSciNetGoogle Scholar
  16. [16]
    —, An explicit formula for Siegel series.Amer. J. Math. 121 (1999), 415–452.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms.Nagoya Math. J. 95 (1984), 73–84.MATHMathSciNetGoogle Scholar
  18. [18]
    —, A note on Klingen’s Eisenstein series.Abh. Math. Sem. Univ. Hamburg 60 (1990), 95–114.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Klingen, Zum Darstellungssatz für Siegeische Modulformen.Math. Z. 102 (1967), 30–43.CrossRefMathSciNetGoogle Scholar
  20. [20]
    R. P. Langlands,On the Functional Equations Satisfied by Eisenstein Series. Lect. Notes in Math. vol. 544, Springer, 1976.Google Scholar
  21. [21]
    -, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Danske. Vid. Selsk.34 (1964), nr. 7.Google Scholar
  22. [22]
    -, Über die Fourierkoeffizienten der Eisensteinreihen zweiten Grades.Danske. Vid. Selsk. 38 (1972), nr. 14.Google Scholar
  23. [23]
    -, Siegel’smodular forms and Dirichlet series. Lect. Notes in Math. vol. 216, Springer, 1971.Google Scholar
  24. [24]
    S. Mizumoto, Fourier coefficients of generalized Eisenstein series of degree two I.Inv. Math. 65 (1981), 115–135.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    —, On the secondL-functions attached to Hilbert modular forms.Math. Ann. 269 (1984), 191–216.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    -, Integrality of critical values of triple productL-functions. In:Lect. Notes in Math., vol. 1434. Springer, 1990. pp. 188–195.Google Scholar
  27. [27]
    —, Eisenstein series for Siegel modular groups.Math. Ann. 297 (1993), 581–625. and: Corrections.Ibid. 307 (1997), 169–171.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    —, On integrality of Eisenstein liftings.Manuscripta Math. 89 (1996), 203–235. and: Corrections.Ibid. 90 (1996), 267–269.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    —, Nearly holomorphic Eisenstein liftings,Abh. Math. Sem. Univ. Hamburg 67 (1997), 173–194.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    T. Orloff, Special values and mixed weight weight triple products (with an appendix by Don Blasius).Inv. Math. 90 (1987), 169–180.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    T. Satoh Some remarks on tripleL-functions.Math. Ann. 276 (1987), 687–698.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    G. Shimura On the holomorphy of certain Dirichlet series.Proc. London Math. Soc. 31 (1975), 79–98.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    —, The special values of the zeta functions associated with cusp forms.Comm. pure appl. Math. 29 (1976), 783–804.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    —, Confluent hypergeometric functions on tube domains.Math. Ann. 260 (1982), 269–302.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    —, Nearly holomorphic functions on hermitian symmetric spaces.Math. Ann. 278 (1987), 1–28.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    —, Eisenstein series and zeta functions on symplectic groups.Inv. Math. 119 (1995), 539–584.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    —, Convergence of zeta functions on symplectic and metaplectic groups.Duke Math. J. 82 (1996), 327–347.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades. In:Gesamm. Abh., Bd II, no. 32. Springer, 1966.Google Scholar
  39. [39]
    D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In:Lect. Notes in Math., vol. 627. Springer, 1977. pp. 105–169.Google Scholar

Copyright information

© Mathematische Seminar 2000

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of Technology, Oh-okayamaMeguro-ku, TokyoJapan

Personalised recommendations