Advertisement

Stability of the Quadratic Equation of Pexider Type

  • Soon-Mo Jung
Article

Abstract

We will investigate the stability problem of the quadratic equation (1) and extend the results of Borelli and Forti, Czerwik, and Rassias. By applying this result and an improved theorem of the author, we will also prove the stability of the quadratic functional equation of Pexider type,f 1 (x +y) + f2(x -y) =f 3(x) +f 4(y), for a large class of functions.

Key words and phrases

Quadratic functional equation quadratic equation of Pexider type stability 

References

  1. [1]
    J. Aczél andJ. Dhombres,Functional Equations in Several Variables. Cambridge Univ. Press 1989.Google Scholar
  2. [2]
    C. Borelli andG. L. Forti, On a general Hyers-Ulam stability result.Internat. J. Math. Math. Sci. 18 (1995), 229–236.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. W. Cholewa, Remarks on the stability of functional equations.Aequationes Math. 27 (1984), 76–86.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Czerwik, On the stability of the quadratic mapping in normed spaces.Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    -, The stability of the quadratic functional equation. In:Stability of Mappings of Hyers-Ulam Type (edited by Th. M. Rassias and J. Tabor), Hadronic Press 1994, pp. 81–91.Google Scholar
  6. [6]
    G. L. Forti, Hyers-Ulam stability of functional equations in several variables.Aequationes Math. 50 (1995), 143–190.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Z. Gajda, On stability of additive mappings.Internat. J. Math. Math. Sci. 14 (1991), 431–434.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings.J. Math. Anal. Appl. 184 (1994), 431–436.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. H. Hyers, On the stability of the linear functional equation.Proc. Nat. Acad. Sci. U.S. A. 27 (1941), 222–224.CrossRefMathSciNetGoogle Scholar
  10. [10]
    D. H. Hyers,G. Isac andTh. M. Rassias,Stability of Functional Equations in Several Variables. Birkhäuser 1998.Google Scholar
  11. [11]
    D. H. Hyers andTh. M. Rassias, Approximate homomorphisms.Aequationes Math. 44 (1992), 125–153.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S.-M. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings.J. Math. Anal. Appl. 204 (1996), 221–226.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    —, Hyers-Ulam-Rassias stability of functional equations.Dynamic Systems and Applications 6 (1997), 541–566.zbMATHMathSciNetGoogle Scholar
  14. [14]
    J. M. Rassias, On the stability of the Euler-Lagrange functional equation.C. R. Acad. Bulgare Sci. 45 (1992), 17–20.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Th. M. Rassias, On the stability of the linear mapping in Banach spaces.Proc. Amer. Math. Soc. 72 (1978), 297–300.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    -, On the stability of the quadratic functional equation and its applications. To appear.Google Scholar
  17. [17]
    F. Skof, Proprietá locali e approssimazione di operatori.Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. M. Ulam,Problems in Modern Mathematics. Chapter VI. Science Editions, Wiley 1964.Google Scholar

Copyright information

© Mathematische Seminar 2000

Authors and Affiliations

  1. 1.Mathematics SectionCollege of Science & Technology, Hong-Ik UniversityChochiwonKorea

Personalised recommendations