Higher degree tame hilbert-symbol equivalence of number fields

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Carpenter, Finiteness theorems for forms over global fields.Math. Zeit. 209 (1992), 153–166.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. W. CASSELS andA. FRÖhlich,Algebraic Number Theory. Academic Press, 1967.Google Scholar
  3. [3]
    P. E. Conner, R. Perus, andK. Szymiczek, Wild sets and 2-ranks of class groups.Acta Arithm. 79 (1997), 83–91.MATHGoogle Scholar
  4. [4]
    A. Czogala, On reciprocity equivalence of quadratic number fields.Acta Arithm. 58 (1991),365–387.MathSciNetGoogle Scholar
  5. [5]
    —,On integral Witt equivalence of algebraic number fields.Acta Math, et Inform. Univ. Ostraviensis 4 (1996), 7–20.MATHMathSciNetGoogle Scholar
  6. [6]
    A. Czogala andA. Sladek, Higher degree Hubert symbol equivalence of number fields.Tatra Mountains Math. Publ. 11 (1997), 77–88.MATHMathSciNetGoogle Scholar
  7. [7]
    —, Higher degree Hubert symbol equivalence of number fields II.J. of Number Theory 72 (1998), 363–376.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Milnor, Algebraic K-Theory and quadratic forms.Invent. Math. 9 (1970), 318–344.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Neukirch,Class Field Theory. Springer, 1986.Google Scholar
  10. [10]
    W. Narkiewicz,Elementary and Analytic Theory of Algebraic Numbers. PWN Warszawa, Springer 1990.MATHGoogle Scholar
  11. [11]
    R. Perlis, K. Szymiczek, P. Conner, andR. Litherland, Matching Witts with global fields.Contemp. Math. 155 (1994), 365–387.MathSciNetGoogle Scholar
  12. [12]
    A. Sladek, Hubert symbol equivalence and Milnor K-functor.Acta Math. et Inform. Univ. Ostraviensis 6 (1998), 183–189.MATHMathSciNetGoogle Scholar
  13. [13]
    K. Szymiczek, Witt equivalence of global fields.Commun. Alg. 19(4) (1991), 1125- 1149.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    _, Tame Equivalence and Wild Sets.Semigroup Forum (To appear).Google Scholar
  15. [15]
    —, A characterization of tame Hilbert-symbol equivalence.Acta Math. et Inform. Univ. Ostraviensis 6 (1998), 191–201.MATHMathSciNetGoogle Scholar
  16. [16]
    _,Bilinear Algebra. Gordon and Breach, 1997.Google Scholar
  17. [17]
    J. Täte, Relations betweenK 2 and Galois cohomology.Invent. Math. 36 (1976), 257–274.CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1999

Authors and Affiliations

  1. 1.Institut of MathematicsSilesian UniversityKatowicePoland

Personalised recommendations