Generalized ultrametric spaces I

  • S. Priess-Crampe
  • P. Ribenboim


Abelian Group Equivalence Relation Boolean Algebra Complete Lattice Lower Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    P. Conrad, Embedding Theorems for Abelian Groups with Valuations.Amer. J. Math. 75 (1953), 1–29.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    —, Representation of Partially Ordered Abelian Groups as Groups of Real Functions.Acta Math. 116 (1966), 199–221.zbMATHMathSciNetGoogle Scholar
  3. [3]
    P. Conrad, J. Harvey andC. Holland, The Hahn Embedding Theorem for Abelian Lattice-ordered Groups.Trans. Amer. Math. Soc. 108 (1963), 143–169.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. Delon, Espaces ultramétriques.The Journal of Symbolic Logic 49 (1984), 405–424.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. A. Elliott andP. Ribenboim, Fields of Generalized Power Series.Arch. Math. 54 (1990), 365–371.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    E. Jawhari, D. Misane andM. Pouzet, Retracts: Graphs and Ordered Sets from the Metric Point of View.Contemp. Math. 57 (1986), 175–226.MathSciNetGoogle Scholar
  7. [7]
    S. Koppelberg,Handbook of Boolean Algebras. Edited by J. D. Monk with R. Bonnet, North Holland Amsterdam (1989)Google Scholar
  8. [8]
    W. Krull, Allgemeine Bewertungstheorie.J. Reine Angew. Math. 167 (1932), 160–196.Google Scholar
  9. [9]
    S. Priess-Crampe, Der Banachsche Fixpunktsatz für ultrametrische Räume.Results in Math. 18 (1990), 178–186.zbMATHMathSciNetGoogle Scholar
  10. [10]
    S. Priess-Crampe, P. Ribenboim, Fixed Points, Combs and Generalized Power Series.Abh. Math. Sem. Univ. Hamburg 63 (1993), 227–244.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Schörner, On Immediate Extensions of Ultrametric Spaces. To be published inResults in Math.Google Scholar

Copyright information

© Mathematische Seminar 1996

Authors and Affiliations

  • S. Priess-Crampe
    • 1
  • P. Ribenboim
    • 2
  1. 1.Mathematisches Institut der Universität MünchenMünchenGermany
  2. 2.Department of Mathematics and StatisticsQueen’s University KingstonOntarioCanada

Personalised recommendations