Semi-Universal unfoldings and orbits of the contact group

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bochnak andJ. Siciak, Analytic functions in topological vector spaces.Studia Math. 39 (1971), 77–112.MATHMathSciNetGoogle Scholar
  2. [2]
    J. F. Colombeau,Différentiation et bornologie. Thesis, Université de Bordeaux (1973).Google Scholar
  3. [3]
    A. Grothendieck,Topological vector spaces. Gordon and Breach (1973).Google Scholar
  4. [4]
    R. S. Hamilton, The inverse function theorem of Nash and Moser.Bull. Amer. Math. Soc. 7 (1982), 65–222.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. Hauser, La construction de la déformation semi-universelle d’un germe de variété analytique complexe.Ann. Sci. Éc. Norm. Sup. (4)18 (1985), 1–56.MATHMathSciNetGoogle Scholar
  6. [6]
    H. Hauser andG. Müller, Analytic curves in power series rings.Compos. Math. 76 (1990), 197–201.MATHGoogle Scholar
  7. [7]
    ———, Automorphism groups in local analytic geometry, infinite dimensional Rank Theorem and Lie groups.C. R. Acad. Sci. Paris, I. Ser. 313 (1991), 751–756.MATHGoogle Scholar
  8. [8]
    ———, A Rank Theorem for analytic maps between power series spaces.Publ. Math. IHES 80 (1994), 95–115.Google Scholar
  9. [9]
    M. Hervé,Analyticity in infinite dimensional spaces. De Gruyter (1989).Google Scholar
  10. [10]
    M. Jurchescu, On the canonical topology of an analytic algebra and of an analytic module.Bull. Soc. Math. France 93 (1965), 129–153.MATHMathSciNetGoogle Scholar
  11. [11]
    J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold.Trans. Amer. Math. Soc. 274 (1982), 651–669.CrossRefMathSciNetGoogle Scholar
  12. [12]
    J. Mather,Notes on right equivalence. Preprint (1969).Google Scholar
  13. [13]
    J. Milnor, Remarks on infinite-dimensional Lie groups. In:Relativité, groupes et topologie II. (eds. B. S. DeWitt, R. Stora), Elsevier (1984), 1007–1057.Google Scholar
  14. [14]
    D. Pisanelli, The proof of the Frobenius theorem in a Banach scale. In:Functional analysis, holomorphy and approximation theory. (ed. G. I. Zapata), Marcel Dekker (1983), 379–389.Google Scholar
  15. [15]
    ---, The proof of the inversion mapping theorem in a Banach scale. In:Complex analysis, functional analysis and approximation theory. (ed. J. Mujica), North-Holland (1986), 281–285.Google Scholar
  16. [16]
    H. Upmeier,Symmetric Banach manifolds and Jordan C-algebras. North-Holland (1985).Google Scholar

Copyright information

© Mathematische Seminar 1996

Authors and Affiliations

  1. 1.Institut für MathematikUniversität InnsbruckAustria
  2. 2.FB MathematikUniversität MainzGermany

Personalised recommendations