Pathology & Oncology Research

, Volume 13, Issue 4, pp 284–289 | Cite as

Prognostic significance of loss of c-fos protein in gastric carcinoma

  • Seon Pil Jin
  • Ji Hun Kim
  • Min A Kim
  • Han-Kwang Yang
  • Hee Eun Lee
  • Hye Seung Lee
  • Woo Ho Kim


c-fos was first identified as a viral oncoprotein, and has been studied in terms of its oncogenic function in tumorigenesis. Many experimental and clinical data indicated that c-fos expression plays a role in the progression of several types of carcinomas. However, some recent studies challenge this view as they indicate that c-fos has tumor suppressor activity. In the present study, we assessed c-fos protein expression in 625 consecutive gastric cancers immunohistochemically, and analyzed its relationship with clinicopathologic factors and survival. We found that a loss of c-fos expression is correlated with a more advanced stage, lymph node metastasis, lymphatic invasion and shorter survival, indicating that c-fos expression in gastric cancer cells is lost during progression and that this loss is associated with a poor prognosis. The above findings suggest that loss of c-fos expression has tumor suppressor activity in gastric cancer and we suspect that this suppressor activity might be related to the pro-apoptotic function of c-fos.

Key words

stomach neoplasms immunohistochemistry survival analysis proto-oncogene protein c-fos tumor suppressor protein tissue array analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P: c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55: 917–924, 1988PubMedCrossRefGoogle Scholar
  2. 2.
    Schutte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J: jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun. Cell 59: 987–997, 1989PubMedCrossRefGoogle Scholar
  3. 3.
    Bakin AV, Curran T: Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283: 387–390, 1999PubMedCrossRefGoogle Scholar
  4. 4.
    Grigoriadis AE, Schellander K, Wang ZQ, Wagner EF: Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol 122: 685–701, 1993PubMedCrossRefGoogle Scholar
  5. 5.
    Hu E, Mueller E, Oliviero S, Papaioannou VE, Johnson R, Spiegelman BM: Targeted disruption of the c-fos gene demonstrates c-fos dependent and independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J 13: 3094–3103, 1994PubMedGoogle Scholar
  6. 6.
    Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H: The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol 132: 1115–1132, 1996PubMedCrossRefGoogle Scholar
  7. 7.
    Franchi A, Calzolari A, Zampi G: Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Arch 432: 515–519, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Papachristou DJ, Batistatou A, Sykiotis GP, Varakis I, Papavassiliou AG: Activation of the JNK-AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone 32: 364–371, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, Pompetti F, Merli M, Magagnoli G, Balladelli A, Picci P: C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology 55: 556–563, 1998PubMedCrossRefGoogle Scholar
  10. 10.
    Bamberger AM, Milde-Langosch K, Rossing E, Goemann C, Loning T: Expression pattern of the AP-1 family in endometrial cancer: correlations with cell cycle regulators. J Cancer Res Clin Oncol 127: 545–550, 2001PubMedCrossRefGoogle Scholar
  11. 11.
    Prusty BK, Das BC: Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 113: 951–960, 2005PubMedCrossRefGoogle Scholar
  12. 12.
    Yuen MF, Wu PC, Lai VC, Lau JY, Lai CL: Expression of c-Myc, c-Fos and c-Jun in hepatocellular carcinoma. Cancer 91: 106–112, 2001PubMedCrossRefGoogle Scholar
  13. 13.
    Wakita K, Ohyanagi H, Yamamoto K, Tokuhisa T, Saitoh Y: Overexpression of c-Ki-ras and c-fos in human pancreatic carcinomas. Int J Pancreatol 11: 43–47, 1992PubMedGoogle Scholar
  14. 14.
    Bland KI, Konstadoulakis MM, Vezeridis MP, Wanebo HJ: Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 221: 706–718, 1995PubMedCrossRefGoogle Scholar
  15. 15.
    Mikula M, Gotzmann J, Fischer AN, Wolschek MF, Thallinger C, Schulte-Hermann R, Beug H, Mikulits W: The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene 22: 6725–6738, 2003PubMedCrossRefGoogle Scholar
  16. 16.
    American Joint Committee on Cancer: AJCC cancer staging manual 6th ed. Springer-Verlag, New York, 2002Google Scholar
  17. 17.
    International Agency for Research on Cancer (IARC): World Health Organization Classification of Tumors; pathology and genetics of tumors of the digestive system. IARC Press, Lyon, 2000Google Scholar
  18. 18.
    Lee HS, Lee HK, Kim HS, Yang HK, Kim YI, Kim WH: MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas: their roles as prognostic indicators. Cancer 92: 1427–1434, 2001PubMedCrossRefGoogle Scholar
  19. 19.
    Nevine S, Darwish, Kim MA, Chang MS, Lee HS, Lee BL, Kim YI, Kim WH: Prognostic significance of CD24 expression in gastric carcinoma. Cancer Res Treat 36: 298–302, 2004CrossRefGoogle Scholar
  20. 20.
    Kustikova O, Kramerov D, Grigorian M, Berezin V, Bock E, Lukanidin E, Tulchinsky E: Fra-1 induces morphological transformation and increases in vitro invasiveness and mobility of epithelioid adenocarcinoma cells. Mol Cell Biol 18: 7095–7105, 1998PubMedGoogle Scholar
  21. 21.
    Levin WJ, Press MF, Gaynor RB, Sukhatme VP, Boone TC, Reissmann PT, Figlin RA, Holmes EC, Souza LM, Slamon DJ: Expression patterns of immediate early transcription factors in human non-small cell lung cancer. The Lung Cancer Study Group. Oncogene 11: 1261–1269, 1995PubMedGoogle Scholar
  22. 22.
    Liu G, Takano T, Matsuzuka F, Higashiyama T, Kuma K, Amino N: Screening of specific changes in mRNAs in thyroid tumors by sequence specific differential display: decreased expression of c-fos mRNA in papillary carcinoma. Endocr J 46: 459–466, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Fleischmann A, Jochum W, Eferl R, Witowsky J, Wagner EF: Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 4: 477–482, 2003PubMedCrossRefGoogle Scholar
  24. 24.
    Grimm C, Wenzel A, Behrens A, Hafezi F, Wagner EF, Reme CE: AP-1 mediated retinal photoreceptor apoptosis is independent of N-terminal phosphorylation of c-Jun. Cell Death Differ 8:859–867, 2001PubMedCrossRefGoogle Scholar
  25. 25.
    Kalra N, Kumar V: c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem 279: 25313–25319, 2004PubMedCrossRefGoogle Scholar
  26. 26.
    Silvers AL, Bachelor MA, Bowden GT: The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia 5: 319–329, 2003PubMedGoogle Scholar
  27. 27.
    Siegmund D, Mauri D, Peters N, Juo P, Thome M, Reichwein M, Blenis J, Scheurich P, Tschopp J, Wajant H: Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 276: 32585–32590, 2001PubMedCrossRefGoogle Scholar
  28. 28.
    Willaime S, Vanhoutte P, Caboche J, Lemaigre-Dubreuil Y, Mariani J, Brugg B: Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 13: 2037–2046, 2001PubMedCrossRefGoogle Scholar
  29. 29.
    Kondo T, Sharp FR, Honkaniemi J, Mikawa S, Epstein CJ, Chan PH: DNA fragmentation and prolonged expression of c-fos, c-jun, and hsp70 in kainic acid-induced neuronal cell death in transgenic mice overexpressing human CuZn-superoxide dismutase. J Cereb Blood Flow Metab 17: 241–256, 1997PubMedCrossRefGoogle Scholar
  30. 30.
    Hasegawa K, Litt L, Espanol MT, Sharp FR, Chan PH: Expression of c-fos and hsp70 mRNA in neonatal rat cerebrocortical slices during NMDA-induced necrosis and apoptosis. Brain Res 785: 262–278, 1998PubMedCrossRefGoogle Scholar
  31. 31.
    Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL: Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 275: 16064–16072, 2000PubMedCrossRefGoogle Scholar
  32. 32.
    Myllykangas S, Monni O, Nagy B, Rautelin H, Knuutila S: Helicobacter pylori infection activates FOS and stress-response genes and alters expression of genes in gastric cancer-specific loci. Genes Chromosomes Cancer 40: 334–341, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2007

Authors and Affiliations

  • Seon Pil Jin
    • 1
  • Ji Hun Kim
    • 3
  • Min A Kim
    • 1
  • Han-Kwang Yang
    • 2
  • Hee Eun Lee
    • 4
  • Hye Seung Lee
    • 4
  • Woo Ho Kim
    • 1
    • 3
  1. 1.Department of PathologySeoul National University College of MedicineSeoulKorea
  2. 2.Department of SurgerySeoul National University College of MedicineSeoul
  3. 3.Department of Cancer Research InstituteSeoul National University College of MedicineSeoul
  4. 4.Department of PathologySeoul National University Bundang HospitalSeongnamKorea

Personalised recommendations