Real-time collision-free path planning for robots in configuration space

  • Wei Li
  • Bo Zhang
  • Hilmar Jaschek
Article
  • 63 Downloads

Abstract

Collision-free path planning for an industrial robot in configuration space requires mapping obstacles from robot's workspace into its configuration space. In this paper, an approach to real-time collision-free path planning for robots in configuration space is presented. Obstacle mapping is carried out by fundamental obstacles defined in the workspace and their images in the configuration space. In order to avoid dealing with unimportant parts of the configuration space that do not affect searching a collision-free path between starting and goal configurations, we construct a free subspace by slice configuration obstacles. In this free subspace, the collision-free path is determined by theA* algorithm. Finally, graphical simulations show the effectiveness of the proposed approach.

Keywords

Motion planning collision avoidance robotics graphical simulation 

References

  1. [1]
    Brady Met al. Robot Motion: Planning and Control. Cambridge, MA: MIT-Press, 1982, Ch. 1, 13.Google Scholar
  2. [2]
    Brooks R A. Solving the find-path problem by good representation of free space. IEEE Trans Sys, Man and Cybern, 1983, SMC-13: 190–197.MathSciNetGoogle Scholar
  3. [3]
    Canny J, Donald B. Simplified Voronoi diagrams. In: Proc of the Third Annual Symposium on Computational Geometry, Ontario, June 1987: 153–161.Google Scholar
  4. [4]
    Denavit J, Hartenberg R. A kinematic notation for low-pair mechanisms based on matrices. ASME J Applied Mechanics, 1955, 22: 215–221.MATHMathSciNetGoogle Scholar
  5. [5]
    Faverjon B. Obstacle avoidance using an octree in the configuration space of a manipulator. In: Proc IEEE Int'l Conf Robotics, Atlanta, March 1984: 504–512.Google Scholar
  6. [6]
    Foley J D, van Dam A. Fundamentals of interactive computer graphics. Reading, Addison-Wesly: Ch. 11, 1981: 432–439.Google Scholar
  7. [7]
    Hart P E, Nilsson N J, Raphad B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern, 1968, SSC-4(2): 100–107.CrossRefGoogle Scholar
  8. [8]
    Hasegawa T. Collision avoidance using characterized description of free space. In: Proc '85 ICAR (Tokyo), 1985: 69–76.Google Scholar
  9. [9]
    John C, Kornel F E. Manipulator collision avoidance by dynamic programming. In: 16th NAMRC North American Manufacturing Res Conf, Univ of Illinois, Urbana, USA, May 1988: 328–335.Google Scholar
  10. [10]
    Li W, Jaschek H, Wloka D. Modifizierung des Roberts' algorithmus zur graphischen darstellung von robotern. Robotersysteme 6, 1990: 76–81.Google Scholar
  11. [11]
    Li W. Automatische bestimmung kollisionsfreier bewegungsbahnen für industrieroboter. Robotersysteme 6, 1990: 218–244.Google Scholar
  12. [12]
    Li W. Graphical simulation and collision avoidance of robots (In German). Wiesbaden: Vieweg-Verlag, Germany, 1992.Google Scholar
  13. [13]
    Li W. Schnelle abbildung von hindernissen in den konfigurationsraum. Robotersysteme 7, 1991: 148–154.Google Scholar
  14. [14]
    Li W. Graphische konstruktion und simulation von robotern. Konstruktion 44, 1992: 113–117.Google Scholar
  15. [15]
    Li W, Zhang B. Solving the robotic ‘pick-and-place’ pathfind problem. ASME Manufacturing Review, 1993, 6(2): 114–128.Google Scholar
  16. [16]
    Lozano-Perez T. Automatic planning of manipulator transfer movements. IEEE Trans Sys Man Cybern, 1981, SMC-11: 681–698.CrossRefGoogle Scholar
  17. [17]
    Lozano-Perez T. A simple motion-planning algorithm for general robot manipulators. IEEE J Robotics and Automation, 1987, RA-3: 224–238.CrossRefGoogle Scholar
  18. [18]
    Luh J Y S, Campbell C E. Minimum distance collision-free path planning for industrial robots with a prismatic joint. IEEE Trans Automatic Control, 1984, AC-29(2): 674–680.Google Scholar
  19. [19]
    Lumelsky V. Effect of kinematics on motion planning for planar robot arms moving amidst unknown obstacles. IEEE J Robotics and Automation, 1987, RA-3: 207–223.MathSciNetGoogle Scholar
  20. [20]
    Waren C W, Danos J C, Mooring G W. An approach to manipulator path planning. Int'l J Robotics Res, 1989, 8(5): 87–95.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 1994

Authors and Affiliations

  • Wei Li
    • 1
  • Bo Zhang
    • 1
  • Hilmar Jaschek
    • 2
  1. 1.Department of Computer ScienceTsinghua UniversityBeijing
  2. 2.Lehrstuhl für Systemtheorie der ElektrotechnikUniversity of SaarlandGermany

Personalised recommendations