Israel Journal of Mathematics

, 98:141

Critical exponent and critical blow-up for quasilinear parabolic equations

Article

Abstract

We consider nonnegative solutions to the Cauchy problem or to the exterior Dirichlet problem for the quasilinear parabolic equationsutum+up with 1<m<p. In case of the Cauchy problem, it is well known thatpm*=m+2/N is the critical exponent of blow-up. Namely, ifp<pm*, then all nontrivial solutions blow up in finite time (blow-up case), and ifp>pm*, then there are nontrivial global solutions (global existence case). In this paper we show: (i) For the Cauchy problem,pm* belongs to the blow-up case. (ii) For the exterior Dirichlet problem,pm* also gives the critical exponent of blow-up.

References

  1. [1]
    C. Bandle and H. A. Levine,On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains. Transactions of the American Mathematical Society316 (1989), 595–622.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Bertsch, R. Kersner and L. A. Peletier,Positivity versus localization in degenerate diffusion equations, Nonlinear Analysis. Theory, Method & Applications9 (1985), 987–1008.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Fujita,On the blowing up of solutions of the Cauchy problem for u t=Δu+u1+α, Journal of the Faculty of Science of the University of Tokyo13 (1966), 109–124.MATHGoogle Scholar
  4. [4]
    V. A. Galaktionov,Blow-up for quasilinear heat equations with critical Fujita's exponents, Proceedings of the Edinburgh Mathematical Society124A (1994), 517–525.MathSciNetGoogle Scholar
  5. [5]
    V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov and A. A. Samarskii,Unbounded solutions of the Cauchy problem for the parabolic equation u t=Δ(uαΔu)+uβ, Soviet Physics Doklady25 (1980), 458–459.MATHGoogle Scholar
  6. [6]
    T. Hamada,Non existence of global solutions of parabolic equation in conical domains, Tsukuba Journal of Mathematics, to appear.Google Scholar
  7. [7]
    K. Hayakawa,On nonexistence of global solutions of some semilinear parabolic equations, Japan Academy. Proceedings49 (1973), 503–505.MATHMathSciNetGoogle Scholar
  8. [8]
    T. Imai and K. Mochizuki,On blow-up of solutions for quasilinear degenerate parabolic equations, Publications of the Research Institute for Mathematical Sciences of Kyoto University27 (1991), 695–709.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Kawanago,Existence and behavior of solutions for u t=Δ(um)+ue, Advances in Mathematics, to appear.Google Scholar
  10. [10]
    O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva,Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs,23, American Mathematical Society, Providence, R.I., 1968.Google Scholar
  11. [11]
    H. A. Levine,The role of critical exponents in blowup theorems, SIAM Review32 (1990), 262–288.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. A. Levine and P. Meier,A blowup result for the critical exponent in cones, Israel Journal of Mathematics67 (1989), 129–136.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. A. Levine and P. E. Sacks,Some existence and nonexistence theorems for solutions of degenerate parabolic equations, Journal of Differential Equations52 (1984), 34–45.CrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Mochizuki and K. Mukai,Existence and nonexistence of global solutions to fast diffusions with source, Methods and Applications of Analysis2 (1995), 92–102.MATHMathSciNetGoogle Scholar
  15. [15]
    K. Mochizuki and R. Suzuki,Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in R N, Journal of the Mathematical Society of Japan44 (1992), 485–504.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    O. A. Oleinik, A. S. Kalashnikov and Chzou Yui-Lin,The Cauchy problem and boundary problems for equations of the type of nonlinear filtration, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya22 (1958), 667–704.MathSciNetGoogle Scholar
  17. [17]
    R. E. Pattle,Diffusion from an instantaneous point source with concentration-dependent coefficient, The Quarterly Journal of Mechanics and Applied Mathematics12 (1959), 407–409.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Suzuki,Critical blow-up for quasilinear parabolic equations in exterior domains, Tokyo Journal of Mathematics, to appear.Google Scholar
  19. [19]
    F. B. Weissler,Existence and nonexistence of global solutions for a semilinear heat equation, Israel Journal of Mathematics38 (1981), 29–40.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1997

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Metropolitan UniversityTokyoJapan
  2. 2.Department of MathematicsTokyo Metropolitan College of Aeronautical EngineeringTokyoJapan
  3. 3.Department of Mathematics, Faculty of ArtsKokushikan UniversityTokyoJapan

Personalised recommendations