On the hypersurfacex+x2y+z2+t3=0 in ℂ4 or a ℂ4-like threefold which is not C3

Article

Abstract

In this note it will be proved that the threefold in ℂ4 which is given byx+x2y+z2+t3=0 is not isomorphic to ℂ3. Here ℂ is the field of complex numbers.

References

  1. [A] S. Abhyankar,On semigroup of a meromorphic curve, Tokyo, Kinokuniya Book-Store, 1978.Google Scholar
  2. [C] P. Cohn,Free Rings and Their Relations, second edition, Academic Press, New York, 1985.MATHGoogle Scholar
  3. [D] A. Dimca,Hypersurfaces in2n diffeomorphic to4n (n≥2), Max-Plank Institute, preprint, 1990.Google Scholar
  4. [G] A. Gutwirth,The action of an algebraic torus on the affine plane. Transactions of the Amercaan Mathematical Society105 (1962), 407–414.MATHCrossRefMathSciNetGoogle Scholar
  5. [I] S. Titaka,On Kodaira logarithmic dimension of algebraic varieties, inComplex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, pp. 175–189.Google Scholar
  6. [K1] S. Kaliman,Smooth contractible hypersurfaces inn and exotic algebraic structures on3, Mathematische Zeitschrift214 (1993), 499–510.MATHCrossRefMathSciNetGoogle Scholar
  7. [K2] S. Kaliman,Exotic structures onn and*-actions on3, inComplex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Vol. 173 (V. Ancona, E. Ballico and A. Silva, eds.), Marcel Dekken, New York-Basel-Hong Kong, 1995, pp. 299–307.Google Scholar
  8. [K3] S. Kaliman,Exotic analytic structures and Eisenman intrinsic measures, Israel Journal of Mathematics88 (1994), 411–423.MATHMathSciNetCrossRefGoogle Scholar
  9. [KML1] S. Kaliman and L. Makar-Limanov,On some family of contractible hypersurfaces in4, Seminaire d'algébre. Journées Singulières et Jacobiénnes 26–28 mai 1993, Prépublication de I'Institut Fourier, Grenoble, 1994, pp. 57–75.Google Scholar
  10. [KML2] S. Kaliman and L. Makar-Limanov,Affine algebraic manifolds without dominant morphisms from euclidean spaces, to appear in the Rocky Mountain Journal of Mathematics.Google Scholar
  11. [Ka1] T. Kambayashi,Automorphism group of a polynomial ring and algebraic group actions on an affine space, Journal of Algebra60 (1979), 439–451.MATHCrossRefMathSciNetGoogle Scholar
  12. [Ka2] T. Kambayashi,On Fujita's strong cancellation theorem for the affine space, Journal of the Faculty of Science of the University of Tokyo23 (1980), 535–548.MathSciNetGoogle Scholar
  13. [KR] M. Koras and P. Russell,On linearizing “good”*-action on3. Canadian Mathematical Society Conference Proceedings10 (1989), 93–102.MathSciNetGoogle Scholar
  14. [K] H. Kraft,Algebraic automorphisms of affine spaces, inTopological Methods in Algebraic Transformation Groups (H. Kraft et al., eds.), Progress in Mathematics, Volume 80, Birkhäuser Verlag, Baseel-Boston, 1989, pp. 81–105.Google Scholar
  15. [MS] M. Miyanishi and T. Sugie,Affine surfaces containing cylinderlike open sets, Journal of Mathematics of Kyoto University20 (1980), 11–42.MATHMathSciNetGoogle Scholar
  16. [R1] P. Russell,On a class of3-like threefolds, Preliminary Report, 1992.Google Scholar
  17. [R2] P. Russell,On affine-ruled rational surfaces, Mathematische Annalen255 (1981), 287–302.MATHCrossRefMathSciNetGoogle Scholar
  18. [S] A. Sathaye,On linear planes, Proceedings of the American Mathematical Society56 (1976), 1–7.MATHCrossRefMathSciNetGoogle Scholar
  19. [Sc] G. Schwarz,Exotic algebraic group actions, Comptes Rendus de l'Académie des Sciences, Paris309 (1989), 89–94.MATHGoogle Scholar

Copyright information

© Hebrew University 1996

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations