Israel Journal of Mathematics

, Volume 69, Issue 2, pp 161–172 | Cite as

Chang’s conjecture for ℵω

  • Jean-Pierre Levinski
  • Menachem Magidor
  • Saharon Shelah


We establish, starting from some assumptions of the order of magnitude of a huge cardinal, the consistency of (ℵω+1,ℵω)↠(ω10), as well as of some other transfer properties of the type (κ+,κ)↠(α+,α), where κ is singular.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DJK] H.-D. Donder, R. Jensen and B. Koppelberg,Some applications of the core model, inSet Theory and Model Theory Lecture Notes in Math. No. 872, Springer-Verlag, Berlin 1981, pp. 55–97.CrossRefGoogle Scholar
  2. [DK] H.-D. Donder and P. Koepke.On the consistency strength of “accessible” Jonsson cardinals and of the weak Chang Conjecture. Ann. Pure Appl. Logic25 (1983), 233–261.MATHCrossRefMathSciNetGoogle Scholar
  3. [DKL] H.-D. Donder, P. Koepke and J.-P. Levinski, Some stationary subsets ofPλ, Proc. Am. Math. Soc.102 (1988), 1000–1004.MATHCrossRefMathSciNetGoogle Scholar
  4. [DL] H.-D. Donder and J.-P. Levinski,Some principles related to Chang's Conjecture, Ann. Pure Appl. Logic, to appear.Google Scholar
  5. [F] M. Foreman,Large cardinals and strong model-theoretic transfer properties, Trans. Am. Math. Soc.272 (1982), 427–463.MATHCrossRefMathSciNetGoogle Scholar
  6. [K] K. Kunen,Saturated ideals, J. Symb. Logic43 (1978), 65–76.MATHCrossRefMathSciNetGoogle Scholar
  7. [L] J.-P. Levinski,Instances of the Conjecture of Chang, Isr. J. Math.48 (1984), 225–243.MATHCrossRefMathSciNetGoogle Scholar
  8. [R] F. Rowbottom,Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic3 (1971), 1–44.MATHCrossRefMathSciNetGoogle Scholar
  9. [S] S. Shelah,Proper Forcing, Lecture Notes in Math. No. 940, Springer-Verlag, Berlin, 1982.MATHGoogle Scholar

Copyright information

© Hebrew University 1990

Authors and Affiliations

  • Jean-Pierre Levinski
    • 1
  • Menachem Magidor
    • 2
  • Saharon Shelah
    • 2
  1. 1.Mathernatical DepartmentDartmouth CollegeHanoverUSA
  2. 2.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations