Biotechnology and Bioprocess Engineering

, Volume 5, Issue 3, pp 159–163

DNA Chip technologies

Article

Abstract

The genome sequencing project has generated and will continue to generate enormous amounts of sequence data. Since the first complete genome sequence of bacteriumHacmophilus influenzac was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have been determined. Given this ever-increasing amounts of sequence information, new strategies are necessary to efficiently pursue the next phase of the genome project—the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficiently identify the differential expression pattern of independent biological samples. DNA chip provides a new tool for genome expression analysis that may revolutionize many aspects of human life including new drug discovery and human disease diagnostics.

Keywords

DNA chip genome bioinformatics functional genomics lab-on-a-chip 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Flischmann, R. D.et al. (1995) Whole-genome random sequencing and assembly ofHaemorphilus influenzac Rd.Science 269: 496–512.CrossRefGoogle Scholar
  2. [2]
    http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html.Google Scholar
  3. [3]
    Alwine, J. C., D. J. Kemp, and G. R. Stark (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes.Proc. Natl. Acad. Sci. USA 74: 5350–5354.CrossRefGoogle Scholar
  4. [4]
    Zinn, K., D. DiMaio, and T. Maniatis (1983) Identification of two distinct regulatory regions adjacent to the human β-interferon gene.Cell 34: 865–879.CrossRefGoogle Scholar
  5. [5]
    St. John, T. P., and R. W. Davis (1979) Isolation of galactose-inducible DNA sequences fromSaccharomyces cercvisiae by differential plaque filter hybridization.Cell 16: 443–452.CrossRefGoogle Scholar
  6. [6]
    Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene expression parterns with a complementary DNA microarray.Science 270: 467–470.CrossRefGoogle Scholar
  7. [7]
    Hwang, S. Y. (1999) DNA chip technologies. Array of hope.Korean Soc. Med. Biochem. Mol. Biol. News 6: 19–23.Google Scholar
  8. [8]
    http://www.genechip.co.kr.Google Scholar
  9. [9]
    Duggan, D. J., M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent (1999) Expressionprofiling using cDNA, microarrays.Nat. Genet. Suppl. 21: 10–14.CrossRefGoogle Scholar
  10. [10]
    http://www.ncbi.nlm.nih.gov/CGAP/Google Scholar
  11. [11]
    Theriault, T. P., S. C. Winder, and R. C. Gamble (1999) Application of ink-jet printing technology to the manufacture of molecular arrays. pp. 101–120. In:DNA Microarrays. Oxford, UK.Google Scholar
  12. [12]
    http://www.affymetrix.com/Google Scholar
  13. [13]
    Hwang, S. Y. (1997) Whole genome analysis using DNA chips.Korean Soc. Med. Biochem. Mol. Biol. News 4: 23–34.Google Scholar
  14. [14]
    Lipshutz, R. J., S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart (1999) High density synthetic oligonucleotide arrays.Nat. Genet. Supp. 21: 20–24.CrossRefGoogle Scholar
  15. [15]
    Singh-Gasson, S., R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and E. Cerrina (1999) Maskless fabrifabri-cation of light-directed oligonucleotide microarrays using a digital micromirror array.Nat. Biotechnol. 17: 974–973.CrossRefGoogle Scholar
  16. [16]
    http://www.nanogen.com.Google Scholar
  17. [17]
    Holler, M. J., E. Tu, A. Holmsen, R. G. Sosnowski, and J. Olconnel (1999) Active microelectronic arrays for DNA hybridization analysis. pp. 167–185. In:DNA Microarrays, Oxford, UK.Google Scholar
  18. [18]
    Debouck, C., and P. N. Goodfellow (1999) DNA microarrays in drug discovery and development.Nat. Cenet. Supp. 21: 48–50.CrossRefGoogle Scholar
  19. [19]
    Bassett Jr., D. E., M. B. Eisen, and M. S. Boguski (1999) Gene expression informatics—it's all in your mine.Nat. Genet. Supp. 21: 51–55.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2000

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyHanyang UniversityAnsanKorea
  2. 2.MEMS Lab.Samsung Advanced Institute of TechnologySuwonKorea

Personalised recommendations