Advertisement

Applied Biochemistry and Biotechnology

, Volume 20, Issue 1, pp 781–797 | Cite as

The Biological production of ethanol from synthesis gas

  • J. L. Vega
  • S. Prieto
  • B. B. Elmore
  • E. C. Clausen
  • J. L. Gaddy
Session 4 Biological processing of fossil fuels

Abstract

There has been considerable interest recently in the production of liquid fuels from coal through direct or indirect liquefaction. A culture has been isolated from animal waste that is capable of producing ethanol and acetate from carbon monoxide and from hydrogen and carbon dioxide, the major components of synthesis gas. This paper presents results of batch and continuous laboratory studies with this culture. Special efforts are directed toward maximizing the ratio of ethanol to acetate.

Index Entries

Synthesis gas carbon monoxide ethanol acetate clostridia 

Nomenclature

D

dilution rate (h-1)

H

Henry’s law constant (atm • L/mmol)

KLa

volumetric mass transfer coefficient (h-1)

N

amount of component (mmol)

P

partial pressure (atm)

t

time (h)

V

volume (L)

X

cell concentration (mg/L)

Subindices or Superindicies

ACH

acetic acid

CO

carbon monoxide

ETOH

ethanol

G

gas

H2

hydrogen

L

liquid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graboski, M. S. (1984),Catalytic Conversions of Synthesis Gas and Alcohols to Chemicals (Herman, R. G., ed.), Plenum, New York, pp. 37–50.Google Scholar
  2. 2.
    Courty, Ph, and P. Chaumette (1987),Energy Progress 7, 23.Google Scholar
  3. 3.
    Levy, P. F., Barnard, G. W., Garcia-Martinez, D. J., Sanderson, T. E., and Wise, D. L. (1981),Biotechnol. Bioeng. 23, 2293.CrossRefGoogle Scholar
  4. 4.
    Ljungdahl, L. G. (1986),Ann. Rev. Microbiol. 40, 415.CrossRefGoogle Scholar
  5. 5.
    Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B. (1987),Microbiol. Rev. 51, 135.Google Scholar
  6. 6.
    Lynd, L. H., and Zeikus, J. G. (1981),Trends in the Biology of Fermentations for Fuels and Chemicals (Hollaender, A., ed.), Plenum, New York, p. 549.Google Scholar
  7. 7.
    Wood, H. G., Ragsdale, S. W., and Pezaka, E. (1986),FEMS Microbiol. Rev. 39, 345.CrossRefGoogle Scholar
  8. 8.
    Rogers, P. (1986),Adv. Appl. Microbiol. 31, 1.CrossRefGoogle Scholar
  9. 9.
    Ljungdahl, L. G. (1983),Organic Chemicals from Biomass (Wise, D. L., ed.), Benjamin/Cummings, CA, pp. 219–248.Google Scholar
  10. 10.
    Clausen, E. C, and Gaddy, J. L. “Biological Production of Fuels from Coal-Derived Gases, Topical Report No. 1: A Review of the Literature,” prepared for the US Department of Energy, Pittsburgh Energy Technology Center, on Contract No. DC-AC-22-85PC80012 (March 1986).Google Scholar
  11. 11.
    Wiegel, J. (1980),Experientia 36, 1434.CrossRefGoogle Scholar
  12. 12.
    Barik, S., Prieto, S., Harrison, S. B., Clausen, E. C, and Gaddy, J. L. “Biological Production of Alcohols from Coal Through Indirect Liquefaction,” presented at the 9th Symposium on Biotechnology for Fuels and Chemicals, Boulder, CO (May 1987), paper no. 28.Google Scholar
  13. 13.
    Tanner, R. S. (The University of Oklahoma, Department of Botany and Microbiology), private communication (March 1988).Google Scholar
  14. 14.
    Rao, G., Ward, P.J., and Mutharasan, R. (1987),Ann. NY Acad. Sci. 506, 76.CrossRefGoogle Scholar
  15. 15.
    Hungate, R. E. (1969),Meth. Microb. 3B, 117.CrossRefGoogle Scholar
  16. 16.
    L. G. Ljungdahl, and Wiegel, J. (1986),Manual of Industrial Microbiology and Biotechnology (Demain, A. L. and Solomon, N. A., eds.), American Society for Microbiology, pp. 84-96.Google Scholar
  17. 17.
    Vega, J. L., PhD dissertation, University of Arkansas, Fayetteville, AR (August 1987).Google Scholar
  18. 18.
    Vega, J. L., Antorrena, G. M., Clausen, E. C, and Gaddy, J. L.Biotechnol. Bioeng (submitted for publication).Google Scholar
  19. 19.
    Finn, R. K., and Nowrey, J. E. (1959),Appl. Microbiol. 7, 29.Google Scholar
  20. 20.
    Vega, J. L., Clausen, E. C, and Gaddy, J. L. Biotechnol. Bioeng. (submitted for publication).Google Scholar
  21. 21.
    Kim, B. H., Bellows, P., Datta, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48, 764.Google Scholar
  22. 22.
    Meyer, C. L., McLaughlin, J. K., and Papoutsakis, E. T. (1985),Biotechnol. Lett.7, 37.CrossRefGoogle Scholar
  23. 23.
    Monot, F., and Engasser, J. M. (1983),Biotechnol. Lett. 5, 213.CrossRefGoogle Scholar
  24. 24.
    Jobses, I. M., and Roels, J. A. (1983),Biotechnol. Bioeng. 25, 1187.CrossRefGoogle Scholar
  25. 25.
    Bahl, H., Andersch, W., and Gottschalk, G. (1982),Eur. J. Appl. Microbiol. Biotechnol. 15, 201.CrossRefGoogle Scholar
  26. 26.
    Lundie, L., and Drake, H. L. (1984),J. Bacteriol. 159, 700.Google Scholar
  27. 27.
    Savage, M. D., and Drake, H. L. (1986),J. Bacteriol. 165, 315.Google Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • J. L. Vega
    • 1
  • S. Prieto
    • 1
  • B. B. Elmore
    • 1
  • E. C. Clausen
    • 1
  • J. L. Gaddy
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ArkansasFayetteville

Personalised recommendations