Advertisement

Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase

  • Lillian Wondrack
  • Maria szanto
  • Willis A. wood
Session 4 Biological processing of fossil fuels

Abstract

Coal polymers, water soluble at pH 3.5, were prepared from North Dakota lignite and German subbituminous coal in 35–61% yield. Gel permeation chromatography showed a major component of relatively narrow molecular weight range >75,000. The material did not dialyze through a 12,000-14,000 MW cutoff membrane under several conditions. Minor amounts of smaller fragments were present, but monomeric components were not detected. Incubation of soluble polymer with lignin peroxidase ofPhanerochaete chrysosporium caused substantial disappearance of the high molecular weight polymer and formation of smaller amounts of both higher and lower molecular weight components, but not of monomeric compounds. Addition of veratryl alcohol enhanced depolymerization. Coal polymer competitively inhibited veratryl alcohol oxidation by lignin peroxidase.

Index Entries

Soluble coal polymer lignin peroxidase depolymerization North Dakota lignite German subbituminous coal 

References

  1. 1.
    Cohen, M. S., and Gabriele, P. D. (1982),Appl. Environ. Microbiol. 44, 23–27.Google Scholar
  2. 2.
    Scott, C. D., Strandberg, G. W., and Lewis, S. N. (1986),Biotechnol. Prog. 2, 131–139.Google Scholar
  3. 3.
    Strandberg, G. W. and Lewis, S. N. (1987),J. Ind. Microbiol. 1, 371–275.CrossRefGoogle Scholar
  4. 4.
    Wilson, B. W., Lewis, E. J., Stewart, D. L., and Li, S. M. (1985), pp. 31.1–31.8 in Proceedings of The Tenth Annual EPRI Contractors’ Conference on Clean Liquid and Solid Fuels, April 23-25,1985, Palo Alto, CA, Electric Power Research Institute, Palo Alto, CA.Google Scholar
  5. 5.
    Ward, H. B. (1985),Sys. Appl. Microbiol. 6, 236–238.Google Scholar
  6. 6.
    Wilson, B. W., Bean, R. M., Franz, J. A., Thomas, B. L., Cohen, M. S., Aronson, H., and Gray, Jr., E. T. (1987),Energy & Fuels 1, 80–84.CrossRefGoogle Scholar
  7. 7.
    Pyne, J. W., Jr., Stewart, D. L., Fredrickson, J., and Wilson, B. W. (1987),Appl. Envion. Microbiol. 53, 2844–2848.Google Scholar
  8. 8.
    Wilson, B. W., Lewis, E. J., Stewart, D. L., Li, S. M., Bean, R. M., Chess, E. K., Pyne, J., Cohen, M., and Aronson, H. (1986), pp. IV88-IV98, in Proceedings of Department of Energy Coal Liquification Contractors’ Meeting, Pittsburgh, PA, November 19-21, 1985, NTIS, Springfield, VA.Google Scholar
  9. 9.
    Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.CrossRefGoogle Scholar
  10. 10.
    Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., and Gold, M. H. (1983),Biochem. Biophys. Res. Commun. 114, 1077–1083.CrossRefGoogle Scholar
  11. 11.
    Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280–2284.CrossRefGoogle Scholar
  12. 12.
    Gold, M. H., Kuwahara, M., Chiu, A. A., and Glenn, J. K. (1984),Arch. Biochem. Biophys. 234, 353–362.CrossRefGoogle Scholar
  13. 13.
    Umezawa, T., Shimada, M., Higuchi, T., and Kusai, K. (1986),FEBS Lett. 205, 287–292.CrossRefGoogle Scholar
  14. 14.
    Umezawa, T. and Higuchi, T. (1987),Agric. Biol. Chem. 51, 2281–2284.Google Scholar
  15. 15.
    Haemmerli, S. D. Leisola, M. S. A., Sangïard, D., and Fiechter, A. (1986),J. Biol. Chem. 251, 6900–6903.Google Scholar
  16. 16.
    Hammel, K. W., Kalyanaraman, B., and Kirk, T. K. (1986),J. Biol. Chem. 261, 16948–16952.Google Scholar
  17. 17.
    Kersten, P. J., Tien, M., Kalyanaraman, B., and Kirk, T. K. (1985),J. Biol. Chem. 260, 2609–2612.Google Scholar
  18. 18.
    Hammel, K. E., Tien, M., Kalyanaraman, B., and Kirk, T. K. (1985),J. Biol. Chem. 260, 8348–8353.Google Scholar
  19. 19.
    Hammel, K. E., Kalyanaraman, B., and Kirk, T. K. (1986),Proc. Natl. Acad. Sci. USA 83, 3708–3712.CrossRefGoogle Scholar
  20. 20.
    Kirk, T. K., S., Croan, and Tien, M., Murtagh, K. E., and Farrell, R. L. (1986),Enzyme Microb. Technol. 8, 27–32.CrossRefGoogle Scholar
  21. 21.
    Archibald, F. S. and Fridovich, I. (1982),Arch. Biochem. Biophys. 214, 452–463.CrossRefGoogle Scholar
  22. 22.
    Glenn, J. K. and Gold, M. H. (1985),Arch. Biochem. Biophys. 242, 329–341.CrossRefGoogle Scholar
  23. 23.
    Johnson, M. J. (1949),J. Biol. Chem. 181, 707–711.Google Scholar
  24. 24.
    Beyer, M. (1987),Biotechnol. Lett. 9, 19–24.CrossRefGoogle Scholar
  25. 25.
    van Krevelen, D. W. (1950),Fuel 29, 269.Google Scholar
  26. 26.
    Jüntgen, H., in Biotechnologie im Steinkohlenbergbau, Steinkohlenbergbauverein Workshop Coal Recovery, Second Generation, Jan 1983, Essen, FRG, p. 28.Google Scholar
  27. 27.
    Schutz, J. G. and Sabourin, T., US Patent 4,052,488 (1977).Google Scholar
  28. 28.
    28. Schultz, J. G. D., and Zajac, J., US Patent 4,235,728 (1980).Google Scholar
  29. 29.
    Juettner, B., Smith, R. C. and Howard, H. C. (1935),J. Am. Chem. Soc. 57, 2322–2326.CrossRefGoogle Scholar
  30. 30.
    Chowdhury, J. K., and Biswas, A. B. (1942),J. Indian Chem. Soc. 19, 289–298.Google Scholar
  31. 31.
    Charmbury, H. B., Eckerd, J. W., La Torre, J. S., and Kinney, C. R. (1945),J. Am. Chem. Soc., 625#628.Google Scholar
  32. 32.
    Wondrack, L., Szanto, M., and Wood, W. A. (1987) (unpublished observations).Google Scholar
  33. 33.
    Harvey, P. J., Shoemaker, H. E., and Palmer, J. M. (1986),FEBS Lett. 195, 242–246.CrossRefGoogle Scholar
  34. 34.
    Renganathan, V., Miki, K., and Gold, M. H. (1985),Arch. Biochem. Biophys. 241, 304–314.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Lillian Wondrack
    • 1
  • Maria szanto
    • 1
  • Willis A. wood
    • 1
  1. 1.Salk Institute BiotechnologyIndustrial Associates, Inc.San Diego

Personalised recommendations