Advertisement

Journal of Chemical Sciences

, Volume 96, Issue 6, pp 581–597 | Cite as

Behaviour of acceptor states in semiconducting BaTiO3 and SrTiO3

  • T R N Kutty
Article

Abstract

The semiconductivity inMTiO3 (M=Ba, Sr) in the temperature range of practical applications is greatly influenced by the electronic charge redistribution among the acceptor states, arising from the frozen cation vacancies as well as the transition metal ion impurities. The conductivity measurements and defect chemistry investigations above 800 K indicate that the predominant lattice defects areM− and oxygen vacancies. There is dominantp-type conduction at higherP O 2 values in acceptor doped materials at high temperatures. However, they are insulating solids around room temperature due to the redistribution of electrons between the neutral, singly-or doubly-ionised acceptor states. Results fromepr and resistivity measurements show that the above charge redistribution is dependent on crystal structure changes. Hence the electron or hole loss by the acceptor states is influenced by the soft modes which also accounts for the differences in electrical properties of BaTiO3 and SrTiO3. The results are also useful in explaining the positive temperature coefficient in resistance and some photo-electrochemcial properties of these solids.

Key words

BaTiO3 SrTiO3 semiconductivity in perovskites acceptor states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson H G 1960Phys. Rev. 120 1606CrossRefGoogle Scholar
  2. Berglund C N and Braun H J 1967Phys. Rev. 164, 790CrossRefGoogle Scholar
  3. Berney R L and Cowan D L 1981Phys. Rev. B23 37Google Scholar
  4. Brauer H 1974Solid State Electronics 17 1013CrossRefGoogle Scholar
  5. Butler M A, Abramovich M, Decker F and Juliao F 1981J. Electrochem. Soc. 128 200CrossRefGoogle Scholar
  6. Chang B T, Campet G, Claverie J, Hagenmuller P and Goodenough J B 1983J. Solid State Chem. 49 249CrossRefGoogle Scholar
  7. Hagemann H J and Ihrig H 1979Phys. Rev. B20 3871Google Scholar
  8. Harada J, Axe J D and Shirane G 1970Acta Cryst. A26 608Google Scholar
  9. Hennings D and Pomplun H 1974J. Am. Ceram. Soc. 57 524CrossRefGoogle Scholar
  10. Heywang W 1971J Mater. Sci. 6 1214CrossRefGoogle Scholar
  11. Ihrig H and Hennings D 1978Phys. Rev. B17 4593Google Scholar
  12. Kutty T R N, Murugaraj P and Gajbhiye N S 1984Mater. Lett. 2 396CrossRefGoogle Scholar
  13. Kutty T R N, Murugaraj P and Gajbhiye N S 1985Mater. Res. Bull. 20 565CrossRefGoogle Scholar
  14. Kutty T R N and Murugaraj P 1985Mater. Lett. 3 195CrossRefGoogle Scholar
  15. Kutty T R N and Gomathi Devi L 1985Mater. Res. Bull. 20 793CrossRefGoogle Scholar
  16. Last J T 1957Phys. Rev. 105 1740CrossRefGoogle Scholar
  17. Müller K A 1959Phys. Rev. Lett. 2 341CrossRefGoogle Scholar
  18. Müller K A 1981J. Phys. (Paris) 42 551CrossRefGoogle Scholar
  19. Murugaraj P and Kutty T R N (1986)J. Mater. Sci. Lett. 5 (in press)Google Scholar
  20. Servain J L Laspin Y and Gervais F 1980Phys. Rev. B22 5501Google Scholar
  21. Seuter A M J H 1974Philips Res. Rep., Suppl. 3 1Google Scholar
  22. Shirane G, Axe JD, Harada J and Rameika J P 1970Phys. Rev. B2 155Google Scholar
  23. Wernicke R 1976Philips Res. Rep. 31 526Google Scholar
  24. Ueoka H 1974Ferroelectrics 7 351Google Scholar

Copyright information

© Indian Academy of Sciences 1986

Authors and Affiliations

  • T R N Kutty
    • 1
  1. 1.Materials Research LaboratoryIndian Institute of ScienceBangaloreIndia

Personalised recommendations