Time fractional advection-dispersion equation

  • F. LiuEmail author
  • V. V. Anh
  • I. Turner
  • P. Zhuang


A time fractional advection-dispersion equation is obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order α(0<α<-1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

AMS Mathematics Subject Classification

26A33 49K20 44A10 

Key words and phrases

time fractional advection-dispersion equation Mellin transform Laplace transform 


  1. 1.
    J.M. Augulo, M.D. Ruiz-Medina, V.V. And and W. Grecksch,Fractional diffusion and fractional heat equation, Adv. Appl. Prob.32, (2000), 1077–1099.CrossRefGoogle Scholar
  2. 2.
    V.V. Anh and N.N. Leonenko,Scaling laws for fractional diffusion-wave equations with singular data, Statistics and Probability Letters,48, (2000), 239–252.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    V.V. Anh and N.N. Leonenko,Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys.,104, (2001), 1349–1387.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Basu and D.P. Acharya,On quadratic fractional generalized solid bi-criterion, J. Appl. Math. and Computing10(2002), 131–144.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    D.A. Benson., S. W. Wheatcraft and M. M. Meerschaert,Application of a fractional advection-despersion equation, Water Resour. Res.36(6), (2000a), 1403–1412.CrossRefGoogle Scholar
  6. 6.
    D.A. Benson, S. W. Wheatcraft and M. M. Meerschaert,The fractional-order governing equation of Levy motion, Water Resour. Res.,36(6), (2000b), 1413–1423.CrossRefGoogle Scholar
  7. 7.
    P. Biler, T. Funaki, W.A. Woyczynski, Fractal Burgers equation, I,Differential Equations,147, (1998), 1–38.CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Caputo,The Green function of the diffusion of fluids in porous media with memory, Rend. Fis. Acc. Lincei (ser. 9),7, (1996), 243–250.zbMATHGoogle Scholar
  9. 9.
    A.M.A. El-Sayed and M.A.E. Aly,Continuation theorem of fractionalorder evolutionary integral equations, Korean.J. Comput. Appl. Math.9(2002), 525–534.zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Erdelyi,Tables of Integral Transforms, Vol. I, McGraw-Hill, New York, 1954.Google Scholar
  11. 11.
    R. Giona and H.E. Roman,A theory of transport phenomena in disordered systems, Chem. Eng. J. bf49, (1992), 1–10.CrossRefGoogle Scholar
  12. 12.
    R. Gorenflo, Yu. Luchko and F. Mainardi,Analytical properties and applications of the Wright function, Fractional Calculus Appl. Anal.2, (1999), 383–414.zbMATHMathSciNetGoogle Scholar
  13. 13.
    R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118, (2000), 175–191.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Hilfer,Exact solutions for a class of fractal time random walks, Fractals,3, (1995), 211–216.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Liu, V. Anh and I. Turner,Numerical solution of the fractional-order advection-dispersion equation, Proceedings of the International Conference on Boundary and Interior Layers, Perth, Australia, (2002), 159–164.Google Scholar
  16. 16.
    F. Mainardi,On the initial value problem for the fractional diffusion-wave equation, in: S. Rionero, T. Ruggeri (Eds.), Waves and Stability in Continuous Media, World Scientific, Singapore, (1994), 246–251.Google Scholar
  17. 17.
    F. Mainardi,Fractional diffusive waves in viscoelastic solids in: J.L. Wagner and F.R. Norwood (Eds.), IUTAM Symposium—Nonlinear Waves in Solids, ASME/AMR, Fairfield NJ, (1995), 93–97.Google Scholar
  18. 18.
    F. Mainardi, Yu. Luchko and G. Pagnini,The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl. Anal.,4, (2001).Google Scholar
  19. 19.
    K.S. Miller and B. Ross,An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.zbMATHGoogle Scholar
  20. 20.
    K.B. Oldham and J. Spanier,The Fractional Calculus, Academic Press, 1974.Google Scholar
  21. 21.
    I. Podlubny,Fractional Differential Equations, Academic Press, 1999.Google Scholar
  22. 22.
    A. Saichev and G. Zaslavsky,Fractional kinetic equations: solutions and applications, Chaos,7, (1997), 753–764.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    S.G. Samko, A. A. Kilbas, and O. I. Marichev,Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Newark, N J, 1993.zbMATHGoogle Scholar
  24. 24.
    W.R. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30, (1989), 134–144.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    W. Wyss,The fractional diffusion equation, J. Math. Phys.,27, (1986), 2782–2785.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    W. Wyss,The fractional Black-Scholes equation, Fractional Calculus Appl. Anal.3, (2000), 51–61.zbMATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2003

Authors and Affiliations

  1. 1.Department of MathematicsXiamen UniversityXiamenChina
  2. 2.School of Mathematical SciencesQueensland University of TechnologyAustralia

Personalised recommendations