More on cutting a polygon into triangles of equal areas

  • Yatao Du
  • Ren Ding


In 2000 a general conjecture was proposed:a special polygon cannot be cut into an odd number of triangles of equal areas. It has been proved that the conjecture holds for polygons with at most six sides. In this paper we prove the existence of specialn-polygon for any integern>6 and discuss the conjecture for special polygons with seven sides.

AMS Mathematical Subject Classification


Keywords and phrases

Equidissection odd equidissection special polygon 2-adic valuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Stein,A generalized conjecture about cutting a polygon into triangles of equal areas, Discete Comput. Geom.24 (2000), 141–145.zbMATHGoogle Scholar
  2. 2.
    P. Monsky,A conjecture of Stein on plane dissections, Math. Z.205 (1990), 583–592.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Stein,Equidissections of centrally symmetic octagons, Aequationes Math.37 (1989), 113–118.CrossRefGoogle Scholar
  4. 4.
    S. Stein,Cutting a polyomino into triangles of equal areas, Amer. Math. Monthly106 (1999), 255–257.CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Stein and S. Szabo,Algebra and tiling, The Mathematical Association of America, 1994Google Scholar
  6. 6.
    Rongxia Hao, Junliang Cai and Yanpei Liu,Counting g-essential maps on surface with small genera, Korean J. Comput. & Appl. Math.9(1–2) (2002), 451.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Qi Duan, Tzer-Shyong Chen, K. Djidjeli, W. G. Price and E. H. Twizell,Convex control and approximation properties of interpolating curves, Korean J. Comput. & Appl. Math. May (2000), 397-.Google Scholar
  8. 8.
    Zhaoxiang Li and Yanpei Liu,Chromatic sum of nonseperable simple maps on the plane, J. Appl. Math. & Computing12(1–2) (2003), 120—.Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2005

Authors and Affiliations

  1. 1.Department of MathematicsHebei Normal UniversityShijiazhuangP. R. China

Personalised recommendations