On finite groups with a certain number of centralizers



LetG be a finite group and #Cent(G) denote the number of centralizers of its elements.G is calledn-centralizer if #Cent(G)=n, and primitiven-centralizer if #Cent(G)=#Cent(G/Z(G))=n.

In this paper we investigate the structure of finite groups with at most 21 element centralizers. We prove that such a group is solvable and ifG is a finite group such thatG/Z(G)≃A5, then #Cent(G)=22 or 32. Moroever, we prove that A5 is the only finite simple group with 22 centralizers. Therefore we obtain a characterization of A5 in terms of the number of centralizers

AMS Mathematics Subject Classification

20D99 20E07 

Key Words and phrases

Finite group n-centralizer group primitiven-centralizer group simple group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aschbacher,Finite group theory, Cambridge Univ. Press, (1986).Google Scholar
  2. 2.
    A. R. Ashrafi,On finite groups with a given number of centralizers, Algebra Colloquium,7 (2) (2000), 139–146.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. R. Ashrafi,Counting the centralizers of some finite groups, Korean J. Comput. & Appl. Math.7 (1) (2000), 115–124.MATHMathSciNetGoogle Scholar
  4. 4.
    S. M. Belcastro and G. J. Sherman,Counting centralizers in Finite Groups, Math. Mag.5 (1994), 366–374.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. H. E. Cohn,On n-sum groups, Math. Scand.75 (1994), 44–58.MATHMathSciNetGoogle Scholar
  6. 6.
    J. H. Conway, R. T. Curtis, S. P. Norton and R. A. Wilson,Atlas of finite groups, Oxford Univ. Press (Clarendon), Oxford, (1985).MATHGoogle Scholar
  7. 7.
    M. R. Darafsheh and Z. Mostaghim, Computation of the complex characters of the groupAUT (GL 7(2)), Korean J. Comput. & Appl. Math.4 (1997), 193–210.MATHMathSciNetGoogle Scholar
  8. 8.
    M. R. Darafsheh and Nowroozi Larki, F., The character table of the groupGL 2(q) when extended by a certain group of order two, Korean J. Comput. & Appl. Math.7 (2000), 643–654.MATHMathSciNetGoogle Scholar
  9. 9.
    D. Gorenstien,Finite simple groups, Plenum Press, New York, (1982).Google Scholar
  10. 10.
    P. B. Howlett, L. J. Rylands and D. E. Taylor,Matrix generators for exceptional groups of Lie type, J. Symbolic Computation31 (2001), 429–445.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Huppert,Endliche Gruppen I, Springer-Verlag, Berlin (1967).MATHGoogle Scholar
  12. 12.
    P. B. Kleidman and R. A. Wilson,Sporadic simple subgroups of finite exceptional groups of Lie type, J. Algebra,157 (1993), 316–330.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    B. H. Neumann,Groups covered by permutable subsets, J. London Math. Soc.29 (1954), 236–248.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. J. S. Robinson,A course in the theory of groups, 2nd ed., Springer-Verlag, Berlin (1996).Google Scholar
  15. 15.
    M. Schonert et al.,GAP: Groups, Algorithms and Programming, Version 4.3, Aachen, St Andrews, 2003. (http://www-gap.dcs.st-andrews.ac.uk/~gap)Google Scholar
  16. 16.
    M. J. Tomkinson,Groups covered by finitely many cosets or subgroups, Comm. Alg.15 (1987), 845–859.MATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2005

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of KashanKashanIran
  2. 2.Department of MathematicsIsfahan University of TechnologyIsfahanIran

Personalised recommendations