Molecular Neurobiology

, Volume 6, Issue 1, pp 41–73

Vitamin neurotoxicity

  • S. Robert Snodgrass
Article

Abstract

Vitamins contain reactive functional groups necessary to their established roles as coenzymes and reducing agents. Their reactive potential may produce injury if vitamin concentration, distribution, or metabolism is altered. However, identification of vitamin toxicity has been difficult. The only well-established human vitamin neurotoxic effects are those due to hypervitaminosis A (pseudotumor cerebri) and pyridoxine (sensory neuropathy). In each case, the neurological effects of vitamin deficiency and vitamin excess are similar. Closely related to the neurological symptoms of hypervitaminosis A are symptoms including headache, pseudotumor cerebri, and embryotoxic effects reported in patients given vitamin A analogs or retinoids. Most tissues contain retinoic acid (RA) and vitamin D receptors, members of a steroid receptor superfamily known to regulate development and gene expression. Vitamin D3 effects on central nervous system (CNS) gene expression are predictable, in addition to the indirect effects owing to its influence on calcium and phosphorus homeostasis. Folates and thiamine cause seizures and excitation when administered in high dosage directly into the brain or cerebrospinal fluid (CSF) of experimental animals but have rarely been reported to cause human neurotoxicity, although fatal reactions to iv thiamine are well known. Ascorbic acid influences CNS function after peripheral administration and influences brain cell differentiation and 2-deoxyglucose accumulation by cultured glial cells. Biotin influences gene expression in animals that are not vitamin-deficient and alters astrocyte glucose utilization.

The multiple enzymes and binding proteins involved in regeneration of retinal vitamin A illustrate the complexity of vitamin processing in the body. Vitamin A toxicity is also a good general model of vitamin neurotoxicity, because it shows the importance of the ratio of vitamin and vitamin-binding proteins in producing vitamin toxicity and of CNS permeability barriers. Because vitamin A and analogs enter the CNS better than most vitamins, and because retinoids have many effects on enzyme activity and gene expression, Vitamin A neurotoxicity is more likely than that of most, perhaps all other vitamins. Megadose vitamin therapy may cause injury that is confused with disease symptoms. High vitamin intake is more hazardous to peripheral organs than to the nervous system, because CNS vitamin entry is restricted. Vitamin administration into the brain or CSF, recommended in certain disease states, is hazardous and best avoided. The lack of controlled trials prevents us from defining the lowest human neurotoxic dose of any vitamin. Large differences in individual susceptibility to vitamin neurotoxicity probably exist, and ordinary vitamin doses may harm occasional patients with genetic disorders. Several vitamins, including A, D3, ascorbate, biotin, folates, pyridoxine, and thiamine have been found to have noncoenzyme effects that indicate neurotoxic potential. Increasing numbers of vitamins are being reported to alter gene expression by noncoenzyme mechanisms. Data are presented showing that several vitamins (biotin, folic acid, pyridoxal, and RA) increase45Ca influx in cultured neural cells. These effects on calcium permeability correlate with neurotoxic potential.

Index Entries

Vitamins vitamin A ascorbic acid blood-brain barrier intrathecal drug administration neurotoxicity calcium pyridoxine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlskog J. E. and O'Neill B. P. (1982) Pseudotumor.Cerebri. Ann. Int. Med. 97, 249–256.Google Scholar
  2. Alcalay M., Zangrilli D., Pandolfi P. P., Longo L., Mencarelli A., Giacomucci A., Rocchi M., Bionid M., Rambaldi A., Lo Coco F., Di Verio D., Douti E., Grignani F., and Pelicci P. G. (1991) Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor locus.Proc. Natl. Acad. Sci. USA 88, 1977–1981.PubMedGoogle Scholar
  3. Allgood V. E., Powell-Oliver F. E., and Cidlowski J. A. (1990) Vitamin B6 influences glucocorticoid receptor-dependent gene expression.J. Biol. Chem. 265, 12424–12433.PubMedGoogle Scholar
  4. Andorn A. C., Bacon B. R., Nguyen-Hunh A. T., Parlato S. J., and Stitts J. A. (1988) Guanyl nucleotide interactions with dopaminergic binding sites labeled by3H Spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high-affinity binding sites.Mol. Pharmacol. 33, 155–162.PubMedGoogle Scholar
  5. Andresen J. W. and Shih J. C. (1986) Necessity of ascorbic acid in the radioligand binding assay for [3H]5-hydroxytryptamine.Neuropharmacology 25, 869–875.PubMedGoogle Scholar
  6. Antopol W. and Tarlov I. M. (1942) Experimental study of the effects produced by large doses of vitamin B6.J. Neuropath. Exp. Neurol. 1, 330–336.Google Scholar
  7. Asbury A. K., Mc Khann G. M., and McDonald W. I. (1986)Diseases of the Nervous System, Saunders, Philadelphia, PA.Google Scholar
  8. Bagavandoss P. and Midgley A. R. (1987) Lack of difference between retinoic acid and retinol in stimulating progesterone production by luteinizing granulosa cells in vitro.Endocrinology 121, 420–428.PubMedGoogle Scholar
  9. Balistreri W., Farrell M. K., and Bove K. E. (1986) Lessons from the E-Ferol tragedy.Pediatrics 78, 503–506.PubMedGoogle Scholar
  10. Bardosi A. and Dickman U. (1987) Necrotizing myopathy with paracrystalline inclusion bodies in hypervitaminosis E.Acta Neuropath. 75, 166–172.PubMedGoogle Scholar
  11. Bartoszyk G. D. and Wild A. (1989) Antinociceptive effects of pyridoxine, thiamine, and cyanocobalamin in rats.Ann. NY Acad. Sci. 585, 473–476.Google Scholar
  12. Benesch R. and Benesch R. E. (1981) Preparation and properties of hemoglobin modified with derivatives of pyridoxal.Methods Enzymol. 76, 147–159.PubMedGoogle Scholar
  13. Bendich A. and Langseth L. (1989) Safety of vitamin A.Am. J. Clin. Nutr. 49, 358–371.PubMedGoogle Scholar
  14. Benton D. (1981) The influence of large doses of vitamin C on psychological functioning.Psychopharmacology 75, 98–99.PubMedGoogle Scholar
  15. Berman P., Gray P., Chen E., Keyser K., Ehrlich D., Karten H., La Corbier M., Esch F., and Schubert D. (1987) Sequential analysis, cellular localization and experience of a neuroretinal adhesion and cell survival molecule.Cell 51, 135–142.PubMedGoogle Scholar
  16. Bernstein A. L. (1989) Vitamin B6 in clinical neurology.Ann. NY Acad. Sci. 585, 250–260.Google Scholar
  17. Bigby M. and Stern R. S. (1988) Adverse reactions to isotretinoin.J. Am. Acad. Dermatol. 18, 543–552.PubMedGoogle Scholar
  18. Bigelow J. C., Brown D. S., and Wightman R. M. (1984) γ-Aminobutyric acid stimulates the release of endogenous ascorbic acid from rat striatal tissue.J. Neurochem. 42, 412–419.PubMedGoogle Scholar
  19. Bleyer W. A. (1981) Neurologic sequelae of methotrexate and ionizing radiation: a new classification.Cancer Treat. Rep. 65(Suppl. 1), 89–98.PubMedGoogle Scholar
  20. Blomhoff R., Green M. H., Berg T., and Norum K. R. (1990) Transport and storage of vitamin A.Science 250, 399–404.PubMedGoogle Scholar
  21. Bok D. (1985) Retinal photoreceptor-pigment epithelium interactions.Invest. Ophthalmol. Vis. Sci. 26, 1659–1694.PubMedGoogle Scholar
  22. Botez M. I. (1980) Dietary folic acid and the action of brain cholinergic and gamma-aminobutyric acid (GABA) enzymes.Can. J. Neurol. Sci. 7, 133–140.PubMedGoogle Scholar
  23. Boullin D. J., Tagari P., Du Boulay G., Aitken V., and Hughes J. T. (1983) The role of hemoglobin in the etiology of cerebral vasospasm.J. Neurosurg. 59, 231–236.PubMedGoogle Scholar
  24. Boutelle M. G., Svensson L., and Fillenz M. (1989) Rapid changes in striatal ascorbate in response to tail-pinch monitored by constant potential voltammetry.Neuroscience 30, 11–17.PubMedGoogle Scholar
  25. Bower C. and Stanley F. J. (1989) Dietary folate as a risk factor for neural tube defects: evidence from a controlled case study in Western Australia.Med. J. Aust. 150, 613–619.PubMedGoogle Scholar
  26. Boylan J. F. and Gudas L. J. (1991) Overexpression of the cellular RA-binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells.J. Cell. Biol. 112, 965–979.PubMedGoogle Scholar
  27. Bridges C. D. B. (1976) Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye.Exp. Eye Res. 22, 435–455.PubMedGoogle Scholar
  28. Carpenter T. O., Pettifor J. M., Russell R. M., Pitha J., Mobarhan S., Ossip M. S., Wainer S., and Anast C. S. (1987) Severe hypervitaminosis A in siblings: evidence of variable tolerance to retinol intake.J. Pediatrics 111, 507–512.Google Scholar
  29. Chalmers A. H., Cowley D. M., and Brown J. M. (1986) A possible etiologic role for ascorbate in calculi formation.Clin. Chem. 32, 333–336.PubMedGoogle Scholar
  30. Chauhan J. and Dakshinamurti K. (1991) Transcriptional regulation of the glucocorticoid gene by biotin in starved rats.J. Biol. Chem. 266, 10,035–10,038.Google Scholar
  31. Chen L. H. and Chang H. M. (1979) Effects of high level of vitamin C on tissue antioxidant status of guinea pigs.Int. J. Vit. Nutr. Res. 49, 87–91.Google Scholar
  32. Ch'ien L. T., Krumdieck C. L., Scott C. W., and Butter-worth C. E. (1975) Harmful effect of megadoses of vitamins: electroencephalogram abnormalities and seizures induced by intravenous folate in drug-treated epileptics.Am. J. Clin. Nutr. 28, 51–58.PubMedGoogle Scholar
  33. Chinoy N. J. (1972) Ascorbic acid levels in mammalian tissues and its metabolic significance.Comp. Biochem. Physiol. 42A, 945–952.Google Scholar
  34. Choi D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage.Trends Neurosci. 11, 465–469.PubMedGoogle Scholar
  35. Chuang D. T., Ku L. S., and Cox R. P. (1982) Thiamine-responsive maple syrup urine disease: decreased affinity of the mutant branched chain alphaketoacid dehydrogenase for alpha-ketovalerate and thiamine pyrophosphate.Proc. Natl. Acad. Sci USA 79, 3300–3304.PubMedGoogle Scholar
  36. Cohen P. A., Schneideman K., Ginsberg-Fellner F., Sturman J. A., Knittle J., and Gaull G. E. (1973) High pyridoxine diet in the rat: possible implications for megavitamin therapy.J. Nutr. 103, 143–151.PubMedGoogle Scholar
  37. Cohlan S. Q. (1953) Excessive intake of vitamin A as a cause of congenital anomalies in the rat.Science 177, 535–536.Google Scholar
  38. Coleman M., Sobel S., Bhagavan H. N., Coursin D., Marquardt A., Guay M., and Hunt C. (1985) A double-blind study of vitamin B6 in Down's syndrome infants. Clinical and Biochemical Results.J. Ment. Defic. Res. 29, 233–240.PubMedGoogle Scholar
  39. Collins S. J. (1987) The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression.Blood 70, 1233–1244.PubMedGoogle Scholar
  40. Cook R. J. and Blair J. A. (1979) The distribution and chemical nature of radioactive folates in rat liver cells and rat liver mitochondria.Biochem. J. 178, 651–659.PubMedGoogle Scholar
  41. Dabek J. (1990) An emerging view of vitamin D.Scand. J. Clin. Lab. Invest. 201(Suppl), 127–133.Google Scholar
  42. Dakshinamurti K. and Chauhan J. (1989) Biotin.Vitam. Horm. 45, 337–384.PubMedGoogle Scholar
  43. Dalman F. C., Sturzenbecker L. J., Levin A. A., Lucas D. A., Perdew G. H., Petkovich M., Chambon P., Grippo J. F., and Pratt W. B. (1991) Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking’ complexes with hsp90.Biochemistry 30, 5605–5608.PubMedGoogle Scholar
  44. Das S. R. and Gouras P. (1988) Retinoid metabolism in cultured human retinal pigment epithelium.Biochem. J. 250, 459–465.PubMedGoogle Scholar
  45. Davis F. B., Smith T. J., Davis P. J. and Blas S. D. (1991) Structure-activity relationships of retinoids as inhibitors of calmodulin-dependent human erythrocyte Ca++-ATPase activity and calmodulin binding to membranes.Biochem. J. 277, 603–666.PubMedGoogle Scholar
  46. DeWit R. J. W. and Bulgakov R. (1985) Guanine nucleotides modulate the ligand binding properties of cell surface folate receptors in Dictyostelium discoideum.FEBS Lett 179, 257–261.Google Scholar
  47. Dias M. V. (1947) Action of thiamine applied directly to the cerebral cortex.Science 105, 211–213.PubMedGoogle Scholar
  48. DiSorbo D. M. and Litwack G. (1981) Changes in the intracellular levels of pyridoxal 5′-phosphate affect the induction of tyrosine aminotransferase.Biochem. Biophys. Res. Commun. 99, 1203–1208.PubMedGoogle Scholar
  49. Dunn J. A., Ahmed M. U., Murtiashaw M. H., Richardson J. M., Walla M. D., Thorpe S. R., and Baynes J. W. (1990) Reaction of ascorbate with lysine and protein under autoxidizing conditions: formation ofN-(carboxymethyl) lysine by reaction between lysine and products of autooxidation of ascorbate.Biochemistry 29, 10,964–10,970.Google Scholar
  50. Durston A. J., Timmermans R. P. M., Hage W. J., Hendriks H. F. J., de Vries N. J., Hedideveld M., and Nieuwkoop P. D. (1989) Retinoic acid causes an antero-posterior transformation in the developing nervous system.Nature 340, 140–144.PubMedGoogle Scholar
  51. Duvoisin R. C., Yahr M. D. and Cote L. (1969) Reversal of the “DOPA effect” in Parkinsonism by pyridoxine.Trans. Am. Neurol. Assoc. 94, p. 81.PubMedGoogle Scholar
  52. Editorial (1947) A warning regarding the use of folic acid.N. Engl. J. Med. 237, 712–713.Google Scholar
  53. Editorial, (1991) Brain and vitamins.Lancet 337, 587–588.Google Scholar
  54. Englard S. and Seifter S. (1986) The biochemical functions of ascorbic acid.Annu. Rev. Nutr. 6, 365–406.PubMedGoogle Scholar
  55. Enstrom J. E. and Pauling L. (1982) Mortality among health-conscious elderly Californians.Proc. Natl. Acad. Sci. USA 79, 6023–6027.PubMedGoogle Scholar
  56. Ettinger L. J. (1982) Pharmacokinetics and biochemical effects of a fatal intrathecal methotrexate overdose.Cancer 50, 444–450.PubMedGoogle Scholar
  57. Evans R. M. (1988) The steroid and thyroid hormone receptor superfamily.Science 240, 889–895.PubMedGoogle Scholar
  58. Eysenck H. J. (1991) IQ and vitamin supplements.Nature 351, 263.PubMedGoogle Scholar
  59. Farris W. A. and Eerdman J. W. (1982) Protracted hypervitaminosis A following long-term, low-level intake.JAMA 247, 1317–1318.PubMedGoogle Scholar
  60. Finlay J. A., Strom M., Ong D. E., and Deluca H. F. (1990) Regulation of cellular retinol binding protein type II by 1,25-dihydroxyvitamin D3.Biochemistry 29, 4914–4921.PubMedGoogle Scholar
  61. Forfar J. O. and Arneil G. C. (eds.) (1984)Textbook of Paediatrics, 3rd ed., Churchill, Livingstone, Edinburgh, pp. 1196–1287.Google Scholar
  62. Fukushima S., Uwagawa S., Shirai T., Hasegawa R., and Ogawa K. (1990) Synergism by sodiuml-ascorbate but inhibition byl-ascorbic acid for sodium saccharin promotion of rat two-stage bladder carcinogenesis.Cancer Res. 50, 4195–4198.PubMedGoogle Scholar
  63. Fulton B. S. and Rando R. R. (1987) Biosynthesis of 11-cis-retinoids and retinyl esters by bovine pigment epithelium membranes.Biochemistry 26, 7938–7945.PubMedGoogle Scholar
  64. Gardiner T. W., Armstrong-James M., Cann A. W., Wightman R. M., and Rebec G. V. (1985) Modulation of neostriatal activity by iontophoresis of ascorbic acid.Brain Res. 344, 181–185.PubMedGoogle Scholar
  65. Gibberd F. B., Nicholls A., and Wright M. F. (1981) The influence of folic acid on the frequency of epileptic attacks.Eur. J. Clin. Pharmacol. 19, 57–60.PubMedGoogle Scholar
  66. Godfrey P. S. A., Toone B. K., Carney M. W. P., Flynn T. G., Bottiglieri T., Laundry M., Chanarin I., and Reynolds E. H. (1990) Enhancement of recovery from psychiatric illness by methyl folate.Lancet 336, 392–395.PubMedGoogle Scholar
  67. Hadjiconstantinou M. and Neff N. H. (1983) Ascorbate could be hazardous to your experiments: a commentary on dopamine receptor binding studies with speculation on a role for ascorbic acid in neural function.Neuropharmacology 22, 939–943.PubMedGoogle Scholar
  68. Hall C. M., Else C., and Schechter N. (1990) Neuronal intermediate filament expression during neurite outgrowth from explanted goldfish retina effect of retinoic acid.J. Neurochem. 55, 1671–1682.PubMedGoogle Scholar
  69. Hall J. G., Friedman J. M., Kenna B. A., Popkin J., Jawanda M. and Arnold W. (1988) Clinical, genetic, and epidemiological factors in neural tube defects.Am. J. Human Genet. 43, 827–837.Google Scholar
  70. Hara H., Kato H. and Kogure K. (1990) Protective effect of α-tocopherol on ischemic neuronal damage in the gerbil hippocampus.Brain Res. 510, 335–338.PubMedGoogle Scholar
  71. Harding J. J. (198) Nonenzymatic covalent posttranslational modification of proteins in vivo.Adv. Prot. Chem. 37, 247–334.Google Scholar
  72. Hathcock J. N., Hattan D. G., Jenkins M. Y., McDonald J. T., Sundaresan P. R., and Wilkening V. L. (1990) Evaluation of vitamin A toxicity.Am. J. Clin. Nutr. 52, 183–202.PubMedGoogle Scholar
  73. Hayden R. E., Paniello R. C., Yeung C. S. T., Bello S. C., and Dawson S. M. (1987) The effect of glutathione and vitamins A, C and E on acute skin flap survival.Laryngoscope 97, 1176–1179.PubMedGoogle Scholar
  74. Hershko C., Link G., and Pinson A. (1987) Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and α-tocopherol in ironloaded rat myocardial cell cultures.J. Lab. Clin. Med. 110, 355–361.PubMedGoogle Scholar
  75. Hillered L., Persson L., Bolander H. G., Hallstrom A., and Ungerstedt U. (1988) Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis.Neurosci. Lett. 95, 286–290.PubMedGoogle Scholar
  76. Ho M.-T. P., Massey J. B., Pownall H. J., Anderson R. E., and Hollyfield J. G. (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes.J. Biol. Chem. 264, 928–935.PubMedGoogle Scholar
  77. Hollinshead M. B., Spillert C. R., Flynn E. J., and Lazaro E. J. (1990) Pharmacologic doses of ascorbic acid prolong the effects of pentobarbital anesthesia.Res. Commun. Chem. Pathol. Pharmacol. 68, 379–382.PubMedGoogle Scholar
  78. Hommes O. R., ten Berge E. J. F. M., Jansen M. J. T., and Kok J. C. N. (1977) Effects of change in dietary folic acid content on pentylenetetrazol seizure threshold in rat.Epilepsia 18, 431–436.PubMedGoogle Scholar
  79. Hong W. K., Lippman S. M., Itri L. M., Karp D. D., Lee J. S., Byers R. M., Schantz S. P., Kramer A. M., Lotan R., Peters L. J., Dimery I. W., Brown B. W., and Goepfert H. (1990) Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck.N. Engl. J. Med. 323, 795–801.PubMedGoogle Scholar
  80. Johnston C. S. (1989) Effect of single oral doses of ascorbic acid on body temperature in healthy guinea pigs.J. Nutr. 119, 425–427.PubMedGoogle Scholar
  81. Jones G. J., Crouch R. K., Wiggert B., Cornwell M. C., and Chader G. J. (1989) Retinoid requirements for recovery of sensitivity after visual pigment bleaching in isolated photoreceptors.Proc. Natl. Acad. Sci. USA 86, 9606–9610.PubMedGoogle Scholar
  82. Jones P. G. and Helch J. (1980) Specific binding of fluorescein labeled serum retinol binding protein to its cell surface receptor in isolated, purified, bovine pigment epithelial cells.Exp. Eye Res. 30, 489–497.PubMedGoogle Scholar
  83. Kalin J. R., Wells M. G., and Hill D. L. (1982) Disposition of 13-cis retinoic acid and N-(hydroxyethyl) retinamide in mice after oral doses.Drug Metab. Dispos. 10, 391–398.PubMedGoogle Scholar
  84. Kane M. A. and Waxman S. (1989) Role of folate binding proteins in folate metabolism.Lab Invest. 60, 737–746.PubMedGoogle Scholar
  85. Kawakami M., Kodama N., and Toda N. (1991) Suppression of the cerebral vasospastic actions of oxyhemoglobin by ascorbic acid.Neurosurgery 28, 33–40.PubMedGoogle Scholar
  86. Keusch G. T. (1990) Micronutrients and susceptibility to infection.Ann. NY Acad. Sci. 587, 181–188.PubMedGoogle Scholar
  87. Khatami M., Suldan Z., David I., Li W., and Rockey J. H. (1988) Inhibitory effects of PALP, ascorbate and aminoguanidine on nonenzymatic glycosylation.Life Sci. 43, 1725–1731.PubMedGoogle Scholar
  88. Kim Y. J. and Rosenberg L. E. (1974) On the mechanism of pyridoxine responsive homocystinuria: Properties of normal and mutant cystathionine β-synthase from cultured fibroblasts.Proc. Natl. Acad. Sci. USA 71, 4821–4825.PubMedGoogle Scholar
  89. Kodama N., Sasati T., Watanabe Z., Yamanobe K., and Sato M. (1986) Prevention of vasospasmcisternal irrigation therapy with urokinase and ascorbic acid.Intracranial Aneurysms—Surgical Timing and Techniques, Kikuchi H., Fukushima T., and Watanabe K., eds., Nishimura, Niigata, pp. 228–242.Google Scholar
  90. Lammer E. J., Chen D. T., Hoar R. M., Agnish N. D., Benke P. J., Braun J. T., Curry C. J., Fernhoof P. M., Grix A. W., Lott I. T., Richard J. M., and Sun C. C. (1985) Retinoic acid embryopathy.N. Engl. J. Med. 313, 837–841.PubMedGoogle Scholar
  91. Lemire J. M. and Archer D. C. (1991) 1,25-dihydroxyvitamin-D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis.J. Clin. Invest. 87, 1103–1107.PubMedGoogle Scholar
  92. Levine R. L. (1983) Oxidative modification of glutamine synthetase: characterization of the ascorbate model system.J. Biol. Chem. 258, 11,828–11,833.Google Scholar
  93. Levy S. L., Burnham W. M., and Hwang P. A. (1990) An evaluation of the anticonvulsant effects of vitamin E.Epilepsy Res. 6, 12–17.PubMedGoogle Scholar
  94. Leyden J. J. (1988) Retinoids and acne.J. Am. Acad. Dermatol. 19, 164–168.PubMedGoogle Scholar
  95. Loo Y. H. and Badger L. (1969) Spectrofluorometric assay of vitamin B6 analogues in brain tissue.J. Neurochem. 16, 801–804.PubMedGoogle Scholar
  96. Luine V. N., Sonnenberg J., and Christakos S. (1987) Vitamin D: is the brain a target?Steroids 49, 133–153.PubMedGoogle Scholar
  97. Luscher B., Mitchell P. J., Williams T., and Tijan R. (1989) Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers.Gene Dev. 3, 1507–1517.PubMedGoogle Scholar
  98. Mahoney C. P., Margolis M. T., Knauss T. A., and Labbe R. F. (1980) Chronic vitamin A intoxication in infants fed chicken liver.Pediatrics 65, 893–896.PubMedGoogle Scholar
  99. Mahoney C. W. and Azzi A. (1988) Vitamin E inhibits protein kinase C activity.Biochem. Biophys. Res. Commun. 154, 694–697.PubMedGoogle Scholar
  100. Majewska M. D., Bell J. A., and London E. D. (1990) Regulation of the NMDA receptor by redox phenomena inhibitory role of ascorbate.Brain, Res. 537, 328–332.Google Scholar
  101. Maksymowych A. B., Daniel V., and Litwack G. (1989) Pyridoxal phosphate as a regulator of the glucocorticoid receptor.Ann. NY Acad. Sci. 585, 438–451.Google Scholar
  102. Manolagas S. C., Provvedini D. M., Murray E. J., Murray S. S., Tsonis P. A., and Spandidos D. A. (1987) Association between the expression of the c-myc oncogene mRNA and the expression of the receptor protein for 1,25-dihydroxyvitamin D3.Proc. Natl. Acad. Sci. USA 84, 856–860.PubMedGoogle Scholar
  103. Marie J. and See G. (1954) Acute hypervitaminosis A of the infant: its clinical manifestation with benign acute hydrocephalus and pronounced bulge of the fontanel: a clinical and biologic study.Am. J. Dis. Child. 87, 731–736.Google Scholar
  104. Massacesi L., Castigli E., Vergelli M. Olivoto J., Abbamondi A. L., Sario F., and Amaducci L. (1991) Immunosuppressive activity of 1 3-cis retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats.J. Clin. Invest. 88, 1331–1337.PubMedGoogle Scholar
  105. Mayeno A. N., Lin F., Foote C. S., Loegering D. A., Ames M. M., Hedberg C. W., and Gleich G. J. (1990) Characterization of “peak E”, a novel amino acid associated with eosinophilia-myalgia syndrome.Science 250, 1707–1708.PubMedGoogle Scholar
  106. Meeks R., Zaharevitiz D., and Chen R. (1981) membrane effects of retinoids: possible correlation with toxicity.Arch. Biochem. Biophys. 207, 141–147.PubMedGoogle Scholar
  107. Mendoza F. S., Johnson F., Kerner J. A., Tune B. M., and Shochat S. J. (1988) Vitamin A intoxication presenting with ascites and a normal vitamin A level.West. J. Med. 145, 88–90.Google Scholar
  108. Michler-Stuke A. and Bottenstein J. E. (1982) Proliferation of glial-derived cells in defined media.J. Neurosci. Res. 7, 215–228.PubMedGoogle Scholar
  109. Middaugh L. D., Grover T. A., Blackwell L. A., and Zemp J. W. (1976) Neurochemical and behavioral effects of diet and related perinatal folic acid restriction.Pharmacol. Biochem. Behav. 5, 129–134.PubMedGoogle Scholar
  110. Milne J. L. and Coukell M. B. (1991) A Ca2+ transport system associated with the plasma membrane of Dictyostelium discoideum is activated by different chemoattractant receptors.J. Cell Biol. 112, 103–110.PubMedGoogle Scholar
  111. Mills J. L., Rhoads G. G., Simpson J. L., Cunningham M. D., Conley M. R., Lassman M. R., and the National Institute of Child Health and Human Development Neural Tube Defects Study Group (1989) The absence of a relation between the periconceptual use of vitamins and neural-tube defects.N. Engl J. Med. 321, 430–435.PubMedGoogle Scholar
  112. Muakkasseh-Kelley S. F., Andresen J. W., Shih J. C., and Hochstein P. (1982) Decreased3H serotonin and3H spiperone binding consequent to lipid peroxidation in rat cortical membranes.Biochem. Biophys. Res. Commun. 104, 1003–1010.Google Scholar
  113. Napoli J. L., Posch K. P., Fiorella P. D., and Boerman M. H. E. M. (1991) Physiological occurrence: biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular RA-binding protein (CRABP) in the pat-way of retinoic acid homeostasis.Biomed. Pharmacother. 45, 131–143.PubMedGoogle Scholar
  114. Neundorfer B. (1980) Neurologische storungen bei hyper- und hypovitaminosen.Nervenarzt 51, 207–216.PubMedGoogle Scholar
  115. Norman A. W., Roth J., and Orci L. (1982) The vitamin Dendocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins).Endocr. Rev. 3, 331–366.PubMedGoogle Scholar
  116. Norris D. K., Murphy R. A., and Chung S. H. (1985) Alteration in amino acid metabolism in epileptogenic mice by elevation of brain PALP.J. Neurochem. 44, 1403–1410.PubMedGoogle Scholar
  117. Obbens E. A. M. T. and Hommes O. R. (1973) The epileptogenic effects of folate derivatives in the rat.J. Neurol. Sci. 20, 223–229.PubMedGoogle Scholar
  118. Oelrichs B. A., Kelly J. D., Kratzung C. C., and Winzer D. J. (1987) Accumulation of ascorbate in rat cerebellum.Internat. J. Vit. Nutr. Res. 58, 213–217.Google Scholar
  119. Okajima T. L., Pepperberg D. R., Ripps H., Wiggert B., and Chader G. J. (1990) Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors.Proc. Natl. Acad. Sci. USA 87, 6907–6911.PubMedGoogle Scholar
  120. Olney J. W., Fuller T. A., De Gubareff T., and Labruyere J. (1981) Intrastriatal folic acid mimics the distant but not the local brain damaging properties of kainic acid.Neurosci. Lett. 25, 185–191.PubMedGoogle Scholar
  121. O'Neill R. D. and Fillenz M. (1985) Circadian changes in extracellular ascorbate in rat cortex, accumbens, striatum, and hippocampus: correlations with motor activity.Neurosci. Lett. 60, 331–336.PubMedGoogle Scholar
  122. Otis L. C., Madison D. V., and Nicoll R. A. (1985) Folic acid has a disinhibitory action in the rat hippocampal slice preparation.Brain Res. 346, 281–286.PubMedGoogle Scholar
  123. Padh H. (1990) Cellular functions of ascorbic acid.Biochem. Cell Biol. 68, 1166–1173.PubMedGoogle Scholar
  124. Pallen C. J. and Wang J. H. (1983) Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin.J. Biol. Chem. 258, 8550–8553.PubMedGoogle Scholar
  125. Pan P., Hall E. M., and Bonner J. T. (1975) Determination of the active portion of the folic acid molecule in cellular slime mold homeostasis.J. Bacteriol. 122, 185–191.PubMedGoogle Scholar
  126. Pardridge W. M., Sakiyama R., and Coty W. A. (1985) Restricted transport of vitamin D and A derivatives through the blood brain barrier.J. Neurochem. 44, 1138–1141.PubMedGoogle Scholar
  127. Parkinson's study group (1989) DATATOP: a multicenter controlled clinical trial in early Parkinson's disease.Arch. Neurol. 46, 1052–1060.Google Scholar
  128. Parry G. J. and Bredesen D. E. (1985) Sensory neuropathy with low dose pyridoxine.Neurology 35, 1466–1468.PubMedGoogle Scholar
  129. Patterson J. W. (1950) The diabetogenic effect of dehydroascorbic acid and dehydroisoascorbic acids.J. Biol. Chem. 183, 81–88.Google Scholar
  130. Pauling L. (1970) Evolution and the need for ascorbic acid.Proc. Natl. Acad. Sci. USA 67, 1643–1648.PubMedGoogle Scholar
  131. Perdew G. H. (1988) Association of the Ah receptor with the 90 kDa heat shock protein.J. Biol. Chem. 263, 13,802–13,805.Google Scholar
  132. Petkovich M., Brand N. J., Krust A. and Chambdon P. (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors.Nature 330, 444–450.PubMedGoogle Scholar
  133. Phelps D. L. (1988) The role of vitamin E therapy in high risk neonates.Clin. Perinatol. 15, 955–963.PubMedGoogle Scholar
  134. Phillips W. E. J., Mills J. H. L., Charbonneau S. M., Tryphonas L., Hatina G. V., Zawidzka Z., Bryce F. R., and Munro I. C. (1978) Subacute toxicity of pyridoxine hydrochloride in the beagle dog.Toxicol. App. Pharmacol. 44, 323–333.Google Scholar
  135. Pierce R. C., Rowlett J. K., Bardo M. T., and Rebec G. V. (1991) Chronic ascorbate potentiates the effects of chronic haloperidol on behavioral supersensitivity but not D2 dopamine receptor binding.Neuroscience 45, 373–378.PubMedGoogle Scholar
  136. Poplack D. G., Bleyer W. A. and Horowitz M. E. (1980) Pharmacology of antineoplastic agents in cerebrospinal fluid.Neurobiology of Cerebrospinal Fluid, vol. 1, Wood, J. H., ed., Plenum, New York, pp. 561–578.Google Scholar
  137. Rando R. R. (1991) Membrane phospholipids as an energy source in the operation of the visual cycle.Biochemistry 30, 595–602.PubMedGoogle Scholar
  138. Renstrom B. and DeLuca H. F. (1989) Incorporation of retinoic acid into proteins via retinoyl CoA.Biochim. Biophys. Acta 998, 69–74.PubMedGoogle Scholar
  139. Reuler J. B., Girard D. E., and Cooney T. G. (1985) Wernicke's encephalopathy.N. Engl. J. Med. 312, 1035–1039.PubMedGoogle Scholar
  140. Roberts H. J. (1981) Perspective on vitamin E as therapy.JAMA 246, 129–131.PubMedGoogle Scholar
  141. Rose R. C. (1988) Transport of ascorbic acid and other water-soluble vitamins.Biochim. Biophys. Acta 947, 335–366.PubMedGoogle Scholar
  142. Rose R. C. (1989) The ascorbate redox potential of tissues: a determinant or indicator of disease?News Physiol. Sci. 4, 190–195.Google Scholar
  143. Rothman S. M. and Olney J. W. (1987) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.Google Scholar
  144. Rudman D. and Williams P. J. (1983) Megadose vitamins, use and misuse.N. Engl. J. Med. 309, 488–490.PubMedGoogle Scholar
  145. Schaumberg H., Kaplan J., Windebank A., Vick N., Rasmus S., Pleasure D., and Brown M. J. (1983) Sensory neuropathy from pyridoxine abuse; a new megavitamin syndrome.N. Engl. J. Med. 309, 445–448.Google Scholar
  146. Schirch V. and Strong W. B. (1989) Interaction of folylpolyglutamates with enzymes in one carbon metabolism.Arch. Biochem. Biophys. 269, 371–380.PubMedGoogle Scholar
  147. Schoenthaler J., Amos S. P., Eysenck H. J., Peritz E., and Yudkin J. (1991) Controlled trial of vitamin-mineral supplementation: effects on intelligence and performance.Personal. Individ. Diff. 12, 351–362.Google Scholar
  148. Scriver C. R. (1985) Vitamins: an evolutionary perspective.J. Inher. Metab. Dis. 1(Suppl. 8), 2–7.Google Scholar
  149. Shaffer J. H. (1977) Multiple comparisons emphasizing selected contrasts: an extension and generation of Dunnett's procedure.Biometrics 33, 293–303.PubMedGoogle Scholar
  150. Sharma R. K. and Wang J. H. (1985) Differential regulation of bovine brain calmodulin-dependent phosphodiesterase isozymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase.Proc. Natl. Acad. Sci. USA 82, 2603–2607.PubMedGoogle Scholar
  151. Slack R. S. and Proulx P. (1990) Effects of retinoic acid and staurosporine on the protein kinase C activity and the morphology of two related human neuroblastoma cell lines.Biochim. Biophys. Acta 1053, 89–96.PubMedGoogle Scholar
  152. Shukla R. R., Joshi H. C., and Misra U. K. (1983) Developmental pattern of DNA and proteins in brain, liver, lung and heart of rats given excess vitamin A postnatally.Biol. Neonate 44, 243–250.PubMedGoogle Scholar
  153. Smith F. R. and Goodman D. S. (1976) Vitamin A transport in human vitamin A toxicity.N. Engl. J. Med. 294, 805–808.PubMedGoogle Scholar
  154. Smith J. A., Foa P. P., Weinstein H. R., Ludwig A. S., and Wertheim J. M. (1948) Some aspects of thiamine toxicity.J. Pharmacol. 93, 294–304.Google Scholar
  155. Solomon D. H., O'Driscoll K., Sosne G., Weinstein I. B., and Cayre Y. E. (1991) 1,25-dihydroyvitamin D3-induced regulation of protein kinase C gene expression during HL-60 cell differentiation.Cell Growth Diff. 2, 187–194.PubMedGoogle Scholar
  156. Spector R. (1977) Vitamin homeostasis in the central nervous system.N. Engl. J. Med. 296, 1393–1398.PubMedGoogle Scholar
  157. Spiegel R. J., Cooper P. R., Blum R. H., Speyer J. L., McBride D., and Mangiardi J. (1984) Treatment of massive intrathecal methotrexate overdose by ventriculolumbar perfusion.N. Engl. J. Med. 311, 386–388.PubMedGoogle Scholar
  158. Sporn M. B. and Roberts A. B. (1985) What is a retinoid?CIBA Found. Symp. 113, 1–5.PubMedGoogle Scholar
  159. Stadtman E. R. (1988) Protein modification in aging.J. Gerontol. 43, B112-B120.PubMedGoogle Scholar
  160. Stamford J. A., Kruk Z. L., and Millar J. (1984) Regional differences in extracellular ascorbic acid levels in the rat brain determined by high speed cyclic voltammetry.Brain Res. 299, 289–295.PubMedGoogle Scholar
  161. Stocks J., Gutteridge J. M. C., Sharp R. J., and Dormandy T. L. (1974) Assay using brain homogenate for measuring the antioxidant activity of biological fluids.Clin. Sci. Mol. Med. 47, 215–223.PubMedGoogle Scholar
  162. Stumpf W. E. (1988) Vitamin D—soltriol the heliogenic steroid hormone: somatotopic activator and modulator.Histochemistry 89, 209–219.PubMedGoogle Scholar
  163. Suttie J. W. (1985) Vitamin K-dependent carboxylase.Ann. Rev. Biochem. 54, 459–477.PubMedGoogle Scholar
  164. Teratology Society (1987) Recommendations for vitamin A use during pregnancy.Teratology 35, 269–275.Google Scholar
  165. Thenen S. W. (1989) Megadose effects of vitamin C on vitamin B-12 status in the rat.J. Nutr. 119, 1107–1114.PubMedGoogle Scholar
  166. Thomas H. and Mayfield E. P. (1972) Response of the rat kidney to folic acid administration: morphologic studies.Lab. Invest. 25, 191–200.Google Scholar
  167. Tyl R. W., Price C. J., Marr M. C., and Kimmel C. A. (1988) Developmental toxicity evaluation of bendectin in CD rats.Teratology 37, 539–552.PubMedGoogle Scholar
  168. Van Rijn C. M., Van der Velden T. J. A. M., Rodrigues de Miranda J. F., Feenstra M. G. P., Hiel J. A. P., and Hommes O. R. (1990) Folates: epileptogenic effects and enhancing effects on3H TBOB binding to the GABAA-receptor complex.Epilepsy Res. 5, 199–208.PubMedGoogle Scholar
  169. Vatassery G. T., Nelson M. J., Maletta G. J., and Kuskowski M. A. (1991) Vitamin E (tocopherols) in human cerebrospinal fluid.Am. J. Clin. Nutr. 53, 95–99.PubMedGoogle Scholar
  170. Vermeer C. (1990) γ-Carboxyglutamate containing proteins and the vitamin K-dependent carboxylase.Biochem. J. 266, 625–636.PubMedGoogle Scholar
  171. Wakade A. R., Edgar D., and Thoenen H. (1982) Substrate requirement and media supplements necessary for the long-term survival of chick sympathetic and sensory neurons cultured without serum.Exp. Cell Res. 140, 71–78.PubMedGoogle Scholar
  172. Wambebe C. and Sokomba E. (1986) Some behavioural and EEG effects of ascorbic acid in rats.Psychopharmacology 89, 167–170.PubMedGoogle Scholar
  173. Warrell R. P., Frankel S. R., Miller W. H., Scheinberg D. A., Itri L. M., Hittelman W. N., Vyas R., Andreef M., Tafuri A., Jakubowski A., Gabrilove J., Gordon M. S., and Dmitrovsky E. (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid).N. Engl. J. Med. 324, 1385–1393.PubMedGoogle Scholar
  174. Weichert P. and Herbst A. (1966) Provocation of cerebral seizures by derangement of the natural balance between glutamic acid and γ-aminobutyric acid.J. Neurochem. 13, 59–64.Google Scholar
  175. Werler M. W., Lammer E. J., Rosenberg L., and Mitchell, A. A. (1990) Maternal vitamin A supplementation in relation to suspected birth defects.Teratology 42, 497–503.PubMedGoogle Scholar
  176. Williams M. J., Harris R. I. and Dean R. C. (1853) Controlled trial of pyridoxine in the premenstrual syndrome.J. Int. Med. Res. 13, 174–180.Google Scholar
  177. Winkler B. S. (1987) In vitro oxidation of ascorbic acid and its prevention by GSH.Biochim. Biophys. Acta 925, 258–264.PubMedGoogle Scholar
  178. Wolf G. (1990) Recent progress in vitamin A research: nuclear retinoic acid receptors and their interaction with gene elements.J. Nutr. Biochem. 1, 284–289.PubMedGoogle Scholar
  179. Wrenn K. D., Murphy F., and Slovis C. M. (1989) A toxicity study of parenteral thiamine hydrochloride.Ann. Emerg. Med. 18, 867–870.PubMedGoogle Scholar
  180. Wurster B. and Butz U. (1980) Reversible binding of the chemoattractant folic acid to cells ofDictyostelium discideum.Eur. J. Biochem. 109, 613–618.PubMedGoogle Scholar
  181. Xu Y., Sladky J. T., and Brown M. J. (1989) Dose dependent expression of neuronopathy after experimental pyridoxine intoxication.Neurology 39, 1077–1083.PubMedGoogle Scholar
  182. Yankner B. A., Duffy L. K., and Kirschner D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β-protein: reversal by tachykinin neuropeptides.Science 250, 279–282.PubMedGoogle Scholar
  183. Zorn N. E. and Smith J. T. (1990) A relationship between vitamin B12 folic acid, ascorbic acid, and mercury uptake and methylation.Life Sci. 47, 167–173.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • S. Robert Snodgrass
    • 1
    • 2
  1. 1.Departments of Neurology and PediatricsUniversity of Southern California School of MedicineLos Angeles
  2. 2.Neurology Research LaboratoryChildrens HospitalLos Angeles

Personalised recommendations