Molecular Neurobiology

, Volume 5, Issue 2–4, pp 399–410 | Cite as

Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease

  • Khalid Iqbal
  • Inge Grundke-Iqbal
Applied Aspects of Synaptic Plasticity


The most characteristic cellular change in Alzheimer's disease is the accumulation of aberrant filaments, the paired helical filaments (PHF), in the affected neurons. There is growing evidence from a number of laboratories that dementia correlates better with the accumulation of PHF than of the extracellular amyloid, the second major lesion of Alzheimer's disease. PHF are both morphologically and biochemically unlike any of the normal neurofibrils. The major polypeptides in isolated PHF are microtubule-associated protein tau, Tau in PHF is phosphorylated differently from tau in microtubules. This abnormal phosphorylation of tau in PHF occurs at several sites. The accumulation of abnormally phosphorylated tau in the affected neurons in Alzheimer's disease brain precedes both the formation and the ubiquitination of the neurofibrillary tangles. In Alzheimer's disease brain, tubulin is assembly competent, but the in vitro assembly of microtubules is not observed. In vitro, the phosphate groups in PHF are less accessible than those of tau to alkaline phosphatase. The in vitro dephosphorylated PHF polypeptides stimulate microtubule assembly from bovine tubulin. It is hypothesized that a defect in the protein phosphorylation/dephosphorylation system is one of the earliest events in the cytoskeletal pathology in Alzheimer's disease. Production of nonfunctional tau by its phosphorylation and its polymerization into PHF most probably contributes to a microtubule assembly defect, and consequently, to a compromise in both axoplasmic flow and neuronal function.

Index Entries

Alzheimer's disease mechanisms of neuronal degeneration neurofibrillary changes paired helical filaments: biochemistry microtubule-associated protein tau abnormal phosphorylation ubiquitination microtubule assembly axoplasmic flow protein phosphorylation/dephosphorylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., and Wood J. N. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants.Nature 298, 84–86.PubMedCrossRefGoogle Scholar
  2. Bahmanyar S., Higgins G., Goldgaber D., Lewis D. A., Morrison J. H., Wilson M. C., Shankar S. K, and Gajdusek D. C. (1987) Localization of amyloid protein messenger RNA in brains from patients with Alzheimer's disease.Science 237, 77–80.PubMedCrossRefGoogle Scholar
  3. Bancher C., Grundke-Iqbal I., Iqbal K., Fried V. A., Smith H. T., and Wisniewski H. M. (1991) Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer's disease.Brain Res. 539, 11–18.PubMedCrossRefGoogle Scholar
  4. Bancher C., Brunner C., Lassmann H., Budka H., Jellinger K, Wiche G., Seitelberger F., Grundke-Iqbal I., Iqbal K., and Wisniewski H. M. (1989a) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease.Brain Res. 477, 90–99.PubMedCrossRefGoogle Scholar
  5. Bancher C., Grundke-Iqbal I., Iqbal K., Kim K. S., and Wisniewski H. M. (1989b) Immunoreactivity of neuronal lipofuscin with monoclonal antibodies to the amyloid β-protein.Neurobiol. Aging 10, 125–132.PubMedCrossRefGoogle Scholar
  6. Barcikowska M., Wisniewski H. M., Bancher C., and Grundke-Iqbal I. (1989) About the presence of paired helical filaments in dystrophic neurites participating in the plaque formation.Acta. Neuropathol. (Berl.) 78, 225–231.CrossRefGoogle Scholar
  7. Braak H., Braak E., Grundke-Iqbal I., and Iqbal K. (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques.Neurosci. Lett. 65, 351–355.PubMedCrossRefGoogle Scholar
  8. Brion J. P., Passareiro H., Nunez J., and Flament-Durand J. (1985) Mise en évidence immunologique de la protéine tau au niveau des lésions dégénérescence neurofibrillaire de la maladie d'Alzheimer.Arch. Biol. (Brux) 95, 229–235.Google Scholar
  9. Brion J. P., Hanger D. P., Bruce M. T., Couck A. M., Flament-Durand J., and Anderton B. T. (1991) Tau in Alzheimer's neurofibrillary tangles.Biochem. J. 273, 127–133.PubMedGoogle Scholar
  10. Dahl D., Selkoe D. J., Pero R. T., and Bignami A. (1982) Immunostaining of neurofibrillary tangles in Alzheimer's senile dementia with a neurofilament antiserum.J. Neurosci. 2, 113–119.PubMedGoogle Scholar
  11. Delacourte A. and Defossez A. (1986) Alzheimer's disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments.J. Neurol. Sci. 76, 173–186.PubMedCrossRefGoogle Scholar
  12. Dickson D. W., Farlo J., Davies P., Crystal H., Fuld P., and Yen S. H. (1988) Alzheimer's disease. A double-labeling immunohistochemical study of senile plaques.Am. J. Pathol 132, 86–101.PubMedGoogle Scholar
  13. Drubin D. G. and Kirschner M. W. (1986) Tau protein function in living cells.J. Cell Biol. 103, 2739–2746.PubMedCrossRefGoogle Scholar
  14. Flament S. and Delacourte (1989) Abnormal tau species are produced during Alzheimer's disease neurodegenerating process.FEBS Lett. 247, 213–216.PubMedCrossRefGoogle Scholar
  15. Flament S., Delacourte A., Hemon B., and Defossez A. (1989) Characterization of two pathological tau protein variants in Alzheimer's brain cortices.J. Neuro. Sci. 92, 133–141.CrossRefGoogle Scholar
  16. Fried V. A., Smith H. T., Hildebrandt E., and Weiner K. (1987) Ubiquitin has intrinsic proteolytic activity: implications for cellular regulation.Proc. Natl. Acad. Sci. USA 84, 3685–3689.PubMedCrossRefGoogle Scholar
  17. Gambetti P., Shecket G., Ghetti B., Hirano A., and Dahl D. (1983) Neurofibrillary changes in human brain. An immunocytochemical study with a neurofilament antiserum.J. Neuropathol. Exp. Neurol. 42, 69–79.PubMedCrossRefGoogle Scholar
  18. Glenner G. G. and Wong C. W. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Comm. 120, 855–890.CrossRefGoogle Scholar
  19. Glenner G. G., Eanes E. G., Bladen H. A., Linke R. P., and Termine J. D. (1974) β-pleated sheet fibrils: a comparison of native amyloid with synthetic protein fibrils.J. Histochem. Cytochem. 22, 1141–1158.PubMedGoogle Scholar
  20. Greenberg S. G. and Davies P. (1990) A preparation of Alzheimer's paired helical filaments that displays distinct λ proteins by polyacrylamide gel electrophoresis.Proc. Natl. Acad. Sci USA 87, 5827–5831.PubMedCrossRefGoogle Scholar
  21. Grundke-Iqbal I. and Iqbal K. (1991) Relationship of amyloid to paired helical filaments.J. Neurochem. 57 (Suppl.), S114A (Abstract).Google Scholar
  22. Grundke-Iqbal I., Iqbal, K., Tung Y.-C., and Wisniewski H. M. (1984) Alzheimer's paired helical filaments: immunochemical identification of polypeptides.Acta. Neuropathol. (Berl.) 62, 259–267.CrossRefGoogle Scholar
  23. Grundke-Iqbal I., Iqbal, K., Tung Y.-C., Wang G. P., and Wisniewski H. M. (1985) Alzheimer's paired helical filaments: crossreacting polypeptide/s present normally in brain.Acta. Neuropathol. (Berl.) 66, 52–61.CrossRefGoogle Scholar
  24. Grundke-Iqbal I., Wang G. P., Iqbal, K., Tung Y.-C., and Wisniewski H. M. (1985b) Alzheimer's paired helical filaments: identification of polypeptides with monoclonal antibodies.Acta. Neuropathol. (Berl.) 68, 279–283.CrossRefGoogle Scholar
  25. Grundke-Iqbal I., Iqbal, K., and Wisniewski H. M. (1985c) Alzheimer's neurofibrillary tangles and plaque neurites crossreact with IgG.J. Neuropathol. Exp. Neurol. 44, 368 (Abstract).CrossRefGoogle Scholar
  26. Grundke-Iqbal I., Iqbal, K., Quinlan M., Tung Y.-C., Zaidi M. S., and Wisniewski H. M. (1986a) Microtubule-associated protein tau: a component of Alzheimer's paired helical filaments.J. Biol. Chem. 261, 6084–6089.PubMedGoogle Scholar
  27. Grundke-Iqbal I., Iqbal, K., Tung, Y.-C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986b) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer's cytoskeletal pathology.Proc. Natl. Acad. Sci. USA 83, 4913–4917.PubMedCrossRefGoogle Scholar
  28. Grundke-Iqbal I., Vorbrodt A. W., Iqbal, K., Tung Y.-C., Wang G. P., and Wisniewski H. M. (1988) Microtubule associated polypeptides tau are altered in Alzheimer's paired helical filaments.Mol. Brain Res. 4, 43–52.CrossRefGoogle Scholar
  29. Grundke-Iqbal I., Iqbal, K., George L.,, Tung Y.-C., Kim K. S., and Wisniewski H. M. (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer's disease.Proc. Natl. Acad. Sci. USA 86, 2853–2857.PubMedCrossRefGoogle Scholar
  30. Guiroy D. C., Miyazaki M., Multhaup G., Fischer P., Garruto R. M., Beyreuther K., Masters C. L., Simms G., Gibbs C. J., and Gajdusek D. C. (1987) Amyloid of neurofibrillary tangles of Guamanian Parkinsonism-dementia and Alzheimer's disease share identical amino acid sequence.Proc. Natl. Acad. Sci. USA 84, 2073–2077.PubMedCrossRefGoogle Scholar
  31. Hershko A. and Ciechanover, A. (1982) Mechanasms of intracellular protein breakdown.Ann Rev. Biochem. 51, 335–364.PubMedCrossRefGoogle Scholar
  32. Himmler A., Drechsel D., Kirschner M. W., and Martin D. W., Jr. (1989) Tau consists of a set of proteins with repeated C-terminal microtubule binding domains and variable N-terminal domains.Mol. Cell Biol. 9, 1381–1388.PubMedGoogle Scholar
  33. Hyman B. T., Van Hoesen G. W., Beyreuther K., and Masters L. (1989) A4 amyloid protein immunoreactivity is present in Alzheimer's disease neurofibrillary tangles.Neurosci. Lett. 101, 352–355.PubMedCrossRefGoogle Scholar
  34. Ihara Y., Abraham C., and Selkoe D. J. (1983) Antibodies to paired helical filaments in Alzheimer's disease do not recognize normal brain protein.Nature 304, 727–730.PubMedCrossRefGoogle Scholar
  35. Ihara Y., Nukina N., Miura R., and Ogawara M. (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease.J. Biochem. (Tokyo) 99, 1807–1810.Google Scholar
  36. Iqbal, K. and Grundke-Iqbal I. (1990a) PHF are less accessible than tau to alkaline phosphatase.J. Neuropathol. Exp. Neurol. 49, 270 (Abstract).CrossRefGoogle Scholar
  37. Iqbal, K. and Grundke-Iqbal I. (1990b) Cytoskeletal protein pathology in Alzheimer's disease: protein phosphorylation and ubiquitination.Molecular Biology and Genetics of Alzheimer's Disease. Miyatake T., Selkoe D. J., and Ihara Y., eds., Elsevier, Amsterdam, pp. 47–56.Google Scholar
  38. Iqbal, K. and Grundke-Iqbal I. (1991) Alzheimer's disease: from cytoskeletal protein pathology to neuronal degeneration.Alzheimer's Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies. Iqbal K., McLachlan D. R. C., Winblad B., and Wisniewski H. M., eds., Wiley, Chichester, England, pp. 173–180.Google Scholar
  39. Iqbal K. and Wisniewski H. M. (1983) Neurofibrillary tangles.Alzheimer's Disease. Reisberg B., ed., The Standard Reference, The Free Press, NY, pp. 48–56.Google Scholar
  40. Iqbal K., Grundke-Iqbal I., and Wisniewski H. M. (1987) Alzheimer's disease, microtubule and neurofilament proteins, and axoplasmic flow.Lancet 1, 102.PubMedCrossRefGoogle Scholar
  41. Iqbal K., Koepke-Secundo E., and Grundke-Iqbal I. (1991) Dephosphorylation of microtubule associated protein tau from Alzheimer's disease brain increases its ability to promote in vitro assembly of microtubules.J. Neuropathol. Exp. Neurol. 50, 316 (Abstract).Google Scholar
  42. Iqbal K., Zaidi T., Thompson C. H., Merz P. A., and Wisniewski H. M. (1984) Alzheimer's paired helical filaments: bulk isolation, solubility and protein composition.Acta. Neuropathol. (Berl.) 62, 167–177.CrossRefGoogle Scholar
  43. Iqbal K., Grundke-Iqbal I., Zaidi T., and Ali N. (1986a) Are Alzheimer's neurofibrillary tangles insoluble polymers?Life Sci. 38, 1695–1700.PubMedCrossRefGoogle Scholar
  44. Iqbal K., Grundke-Iqbal I., Zaidi T., Merz P. A., Wen G. Y., Shaikh S. S., Wisniewski H. M., Alafuzoff I., and Winblad B. (1986b) Defective brain microtubule assembly in Alzheimer's disease.Lancet 2, 421–426.PubMedCrossRefGoogle Scholar
  45. Iqbal K., Grundke-Iqbal I., Smith A. J., George L., Tung Y.-C., and Zaidi T. (1989) Identification and localization of a tau peptide to paired helical filaments of Alzheimer's disease.Proc. Natl. Acad. Sci. USA 86, 5646–5650.PubMedCrossRefGoogle Scholar
  46. Ishii T., Haga S., and Tobutake S. (1979) Presence of neurofilament protein in Alzheimer's neurofibrillary tangles (ANF); an immunofluorescent study.Acta. Neuropathol. (Berl.) 48, 105–112.CrossRefGoogle Scholar
  47. Katzman R., Terry R. D., DeTeresa R., Brown R., Davies P., Fuld P., Renbing X., and Peck A. (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques.Ann. Neurol. 23, 138–144.PubMedCrossRefGoogle Scholar
  48. Khatoon S., Iqbal K., and Grundke-Iqbal I. (1990) Effect of tau on the exchangeable GTP binding site of brain tubulin in Alzheimer's disease.Neurobiol. Aging 11, 279 (Abstract).Google Scholar
  49. Kidd M. (1964) Alzheimer's disease. An electron microscopical study.Brain 87, 307–320.PubMedCrossRefGoogle Scholar
  50. Koepke-Secundo E., Grundke-Iqbal I., and Iqbal K. (1990) Abnormally phosphorylated tau isolated from Alzheimer's disease brain cytosol is not ubiquitinated.Neurobiol. Aging 11, 281 (Abstract).Google Scholar
  51. Kondo J., Honda T., Mori H., Hamada Y., Miura R., Ogawara M., and Ihara Y. (1988) The carboxyl third of tau is tightly bound to paired helicalfilaments.Neuron 1, 817–825.CrossRefGoogle Scholar
  52. Kosik K. S., Joachim C. L., Selkoe D. J. (1986) The microtubule associated protein, tau, is a major antigenic component of paired helical filaments in Alzheimer's disease.Proc. Natl. Acad. Sci. USA 83, 4044–4048.PubMedCrossRefGoogle Scholar
  53. Kosik K. S., Duffy L. K., Dowling M. M., Abraham C., McCluskey A., and Selkoe D. J. (1984) Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer's neurofibrillary tangles.Proc. Natl. Acad. Sci. USA 81, 7941–7945.PubMedCrossRefGoogle Scholar
  54. Kosik K. S., Orecchio L. D., Binder L., Trojanowski J. Q., Lee V. M.-Y., and Lee G. (1988) Epitopes that span the tau molecule are shared with paired helical filaments.Neuron 1, 817–825.PubMedCrossRefGoogle Scholar
  55. Ksiezak-Reding H., Binder I., and Yen S. H. (1990) Alzheimer's disease proteins (A68) share epitopes with tau but show distinct biochemical properties.J. Neurosci Res. 25, 420–430.PubMedCrossRefGoogle Scholar
  56. Lee V. M.-Y., Balin B. J., Otvos L. Jr., and Trojanowski J. Q. (1991) A68: A major subunit of paired helical filaments and derivatized forms of normal tau.Science 251, 675–678.PubMedCrossRefGoogle Scholar
  57. Lindwall G. and Cole R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly.J. Biol. Chem. 259, 5301–5305.PubMedGoogle Scholar
  58. Masters C. L, Multhaup G., Sims G., Pottgiesser J., Martins R. N., and Beyreuther K. (1985a) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels.EMBO J. 4, 2757–2763.PubMedGoogle Scholar
  59. Masters C. L., Simms G., Weinman N., Multhaup G., McDonald B. L., and Beyreuther K. (1985b) Amyloid plaque core proteins in Alzheimer's disease and Down Syndrome.Proc. Natl. Acad. Sci. USA 82, 4245–4249.PubMedCrossRefGoogle Scholar
  60. Mori H., Kondo J., and Ihara Y. (1987) Ubiquitin is a component of paired helical filaments in Alzheimer's disease.Science 235, 1641–1644.PubMedCrossRefGoogle Scholar
  61. Murthy L. R. and Iqbal K. (1990) Paired helical filaments (PHF) in Alzheimer's disease are phosphorvlated at multiple sites.Neurobiol. Aging 11, 285 (Abstract).Google Scholar
  62. Naim A. C., Hemmings H. C., Jr., and Greengard P. (1985) Protein kinases in the brain.Ann. Rev. Biochem. 54, 931–976.Google Scholar
  63. Nieto A., De Garcini E. M., Correas I., and Avila J. (1990) Characterization of tau protein present in microtubules and paired helical filaments of Alzheimer's disease patient's brain.Neuroscience 37, 163–170.PubMedCrossRefGoogle Scholar
  64. Nukina N. and Ihara Y. (1986) One of the antigenic determinants of paired helical filaments is related to tau protein.J. Biochem. (Tokyo) 99, 1541–1544.Google Scholar
  65. Okamoto K., Hirano A., Yamaguchi H., and Gambetti P. (1983) The fine structure of eosinophilic stages of Alzheimer's neurofibrillary tangles.J. Clin. Electron Microscopy 16, 77–82.Google Scholar
  66. Perry G., Friedman R., Shaw G., and Chau V. (1987) Ubiquitin is detected in neurofibrillay tangles and senile plaque neurites of Alzheimer's disease brains.Proc. Natl. Acad. Sci. USA 84, 3033–3336.PubMedCrossRefGoogle Scholar
  67. Perry G., Rizzuto N., Autilio-Gambetti L., and Gambetti P. (1985) Alzheimer's paired helical filaments contain cytoskeletal components.Proc. Natl. Acad. Sci. USA 82, 3916–3920.PubMedCrossRefGoogle Scholar
  68. Perry G., Mulvihill P., Fried V. A., Smith H. T., Grundke-Iqbal I., and Iqbal K. (1989) Immunochemical properties of ubiquitin conjugates in the paired helical filaments of Alzheimer's disease.J. Neurochem. 52, 1523–1528.PubMedCrossRefGoogle Scholar
  69. Roberts G. W., Crow T. J., and Polak J. M. (1985) Location of neuronal tangles in somatostatin neurones in Alzheimer's disease.Nature 314, 92–94.PubMedCrossRefGoogle Scholar
  70. Rubenstein R., Kascsak R. J., Merz P. A., Wisniewski H. M., Carp R. I., and Iqbal K. (1986) Paired helical filaments associated with Alzheimer's disease are readily soluble structures.Brain Res. 372, 80–88.PubMedCrossRefGoogle Scholar
  71. Shibayama H. and Kitoh J. (1978) Electron microscopic structure of the Alzheimer's neurofibrillary changes in case of atypical senile dementia.Acta. Neuropathol. (Berl.) 48, 27–30.Google Scholar
  72. Sternberger N. H., Sternberger L. A., and Ulrich J. (1985) Aberrant neurofilament phosphorylation in Alzheimer's disease.Proc. Natl. Acad. Sci. USA 82, 4274–4276.PubMedCrossRefGoogle Scholar
  73. Swaab D. F., Eikelenboom P., Grundke-Iqbal I., Iqbal K., Kremer R., Ravid R., and Van De Nes J. A. P. (1991) Cytoskeletal alterations in the hypothalamus during aging and in Alzheimer's disease are not necessarily a marker for impending cell death.Alzheimer's Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies. Iqbal K., McLachlan D. R. C., Winblad B., and Wisniewski H. M., eds., Wiley & Sons, Chichester, England, pp. 181–190.Google Scholar
  74. Tabaton M., Cammarata S., Mancardi G., Maneto V., Autillio-Gambetti L., Perry G. and Gambetti P. (1991) Ultrastructural localizatin of β-amyloid, tau and ubiquitin epitopes in extracellular neurofibrillary tangles.Proc. Natl. Acad. Sci. USA 88, 2098–2102.PubMedCrossRefGoogle Scholar
  75. Wang G. P., Grundke-Iqbal I., Kascsak R. J., Iqbal K., and Wisniewski H. M. (1984) Alzheimer's neurofibrillary tangles: monoclonal antibodies to inherent antigen/s.Acta. Neuropathol. (Berl.) 62, 268–275.CrossRefGoogle Scholar
  76. Weingarten M. D., Lockwood A. H., Hwo S.-Y., and Kirschner M. W. (1975) A protein factor essential for microtubule assembly.Proc. Natl. Acad. Sci. USA 72, 1858–1862.PubMedCrossRefGoogle Scholar
  77. Wischik C. M., Novak M., Thogersen H. C., Edwards P. C., Runswick M. J., Jakes R., Walker J. E., Milstein C., Roth M., and Klug A. (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer's disease.Proc. Natl. Acad. Sci. USA 85, 4506–4510.PubMedCrossRefGoogle Scholar
  78. Wisniewski H. M., Merz P. A., and Iqbal K. (1984) Ultrastructure of paired helical filaments of Alzheimer's neurofibrillary tangle.J. Neuropathol. Exp. Neurol. 43, 643–656.PubMedCrossRefGoogle Scholar
  79. Wisniewski K., Jervis G. A., Moretz R. C., and Wisniewski H. M. (1979) Alzheimer's neurofibrillary tangles in diseases other than senile and presenile dementia.Ann. Neurol. 5, 288–294.PubMedCrossRefGoogle Scholar
  80. Wisniewski H. M., Wen G. Y., Wang K. C., Iqbal K., and Rubenstein R. (1986) Determination of the handedness of paired helical filaments in Alzheimer's disease.Electron Microscopy and Alzheimer's Disease. Metuzals J., ed., San Francisco Press, San Francisco, CA, pp. 21–24.Google Scholar
  81. Wood J. G., Mirra S. S., Polbock N. J., and Binder L. I. (1986) Neurofibrillary tangles of Alzheimer's disease share antigenic determinants with the axonal microtubule-associated protein tau.Proc. Natl. Acad. Sci. USA 83, 4040–4043.PubMedCrossRefGoogle Scholar
  82. Yagishita S., Itoh Y., Nan W., and Amano N. (1981) Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles.Acta. Neuropathol. (Berl.) 54, 239–246.CrossRefGoogle Scholar
  83. Yamaguchi H., Nakaato Y., Shoji M., Okamoto K., Ihara Y., Morimatsu M. and Hirai S. (1991) Secondary deposition of beta amyloid within extracellular neurofibrillary tangles in Alzheimer's-type dementia.Am. J. Pathol. 138, 699–705.PubMedGoogle Scholar
  84. Yan S.-C., Hwang S., Rustan T. D., and Frey W. H. (1985) Human brain tubulin purification: decrease in soluble tubulin with age.Neurochem. Res. 10, 1–18.PubMedCrossRefGoogle Scholar
  85. Yen S. H., Gaskin F., and Fu S. M. (1983) Neurofibrillary tangles in senile dementia of the Alzheimer's type share an antigenic determinant with intermediate filaments of the vimentin class.Am. J. Pathol. 113, 373–381.PubMedGoogle Scholar
  86. Yen S. Y., Dickson D. W., Crowe A., Butler M., and Shelanski M. L. (1987) Alzheimer's neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule associated proteins tau and MAP2.Am. J. Pathol. 126, 81–91.PubMedGoogle Scholar
  87. Zhang H., Sternberger N. H., Rubenstein J., Herman M. M., Binder L. I., and Sternberger L. A. (1989) Abnormal processing of multiple proteins in Alzheimer's disease.Proc. Natl. Acad. Sci. USA 86, 8045–8049.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Khalid Iqbal
    • 1
  • Inge Grundke-Iqbal
    • 1
  1. 1.New York State Institute for Basic Research in Developmental DisabilitiesStaten Island

Personalised recommendations