Central nervous system binding sites for calcitonin and calcitonin gene-related peptide

  • Patrick M. Sexton
Basic Molecular Aspects of Synaptic Plasticity

Abstract

Alternative splicing of the primary RNA transcript of the calcitonin gene leads to the generation of two distinct peptides, calcitonin (CT) and calcitonin gene-related peptide (CGRP). These peptides share only limited sequence homology and generally subserve different biological functions through their own distinct binding sites, which differ in specificity and distribution. Additionally, a binding site with high-affinity binding for both peptides that has a restricted pattern of distribution has been identified. The present article reviews the biochemical and morphological characteristics of central CT and CGRP binding, sites.

Index Entries

Calcitonin calcitonin gene-related peptide receptor binding site nervous system autoradiography 

Attachment 1 Neuroanatomical Abbreviations Used in Figures

3V

Third ventricle

4V

Fourth ventricle

ac

Anterior commissure

AcbC

Accumbens nucleus, core

AcbSh

Accumbens nucleus, shell

ACo

Anterior cortical amygdaloid nucleus

acp

Anterior commissure, posterior part

AD

Anterodorsal thalamic nucleus

AHiAL

Amygdalohippocampal area, anterolateral part

AHP

Anterior hypothalamic area, posterior part

AM

Anteromedial thalamic nucleus

AMPO

Anterior medial preoptic nucleus

AP

Area postrema

Arc

Arcuate hypothalamic nucleus

AV

Anteroventral thalamic nucleus

BIC

Nucleus of the brachium of the inferior colliculus

BLa

Basolateral amygdaloid nucleus, anterior part

BLV

Basolateral amygdaloid nucleus, ventral part

BM

Basomedial amygdaloid nucleus

BMA

Basomedial amygdaloid nucleus, anterior part

bp

Brachium pontis (stem of middle cerebellar peduncle)

BST

Bed nucleus of the stria terminalis

BSTL

Bed nucleus of the stria terminalis, lateral division

CA1–4

Fields CA1–4 of Ammon's horn

cc

Corpus callosum

Ce

Central amygdaloid nucleus

CG

Central (periaqueductal) gray

CGD

Central gray (dorsal part)

CGL

Central gray (lateral part)

cl

Claustrum

CLi

Caudal linear nucleus of the raphe

CM

Central medial thalamic nucleus

CM

Central medial thalamic nucleus

cp

Cerebral peduncle, basal part

CPu

Caudate putamen

Cu

Cuneate nucleus

DEn

Dorsal endopiriform nucleus

DG

Dentate gyrus

DLG

Dorsal lateral geniculate nucleus

DMTg

Dorsomedial tegmental area

DpG

Deep gray layer of the superior colliculus

DpMe

Deep mesencephalic nucleus

DR

Dorsal raphe nucleus

DTg

Dorsal tegmental nucleus

dtgx

Dorsal tegmental decussation

EW

Edinger-Westphal nucleus

f

Fornix

fi

Fimbria of the hippocampus

fmj

Forceps major of the corpus callosum

fr

Fasciculus retroflexus

FStr

Fundus striati

GP

Globus pallidus

Gr

Gracile nucleus

HDB

Nucleus of the horizontal limb of the diagonal band

Hil

Hilus of the dentate gyrus

ic

Internal capsule

IC

Inferior colliculus

ICjM

Islands of Calleja, major island

Ing

Intermediate gray layer of the superior colliculus

IO

Inferior olive

IP

Interpeduncular nucleus

La

Lateral amygdaloid nucleus

LA

Lateral amygdaloid nucleus

LD

Laterodorsal thalamic nucleus

LDTg

Laterodorsal tegmental nucleus

LH

Lateral hypothalamic area

LHb

Lateral habenular nucleus

lo

Lateral olfactory tract

LP

Lateral posterior thalamic nucleus

LRt

Lateral reticular nucleus

LSD

Lateral septal nucleus, dorsal part

LSI

Lateral septal nucleus, intermediate part

LSV

Lateral septal nucleus, ventral part

LV

Lateral ventricle

mcp

Middle cerebellar peducle

MD

Mediodorsal thalamic nucleus

MdD

Medullary reticular nucleus, dorsal part

MdV

Medullary reticular nucleus, ventral part

Me

Medial amygdaloid nucleus

Me5

Mesencephalic trigeminal nucleus

MG

Medial geniculate nucleus

MHb

Medial habenular nucleus

MiTg

Microcellular tegmental nucleus

ml

Medial lemniscus

mlf

Medial longitudinal fasciculus

MnR

Median raphe nucleus

Mo5

Motor trigeminal nucleus

MPA

Medial preoptic area

MPo

Medial preoptic nucleus

MS

Medial septal nucleus

n3

Oculomotor nucleus

n6

Abducens nucleus

n7

Facial nucleus

n10

Dorsal motor nucleus, vagus

n11

Nucleus of the lateral lemniscus

n12

Hypoglossal nucleus

opt

Optic tract

ox

Optic chiasm

Pa

Paraventricular hypothalamic nucleus

Pb

Parabrachial nuclei

Pe

Periventricular hypothalamic nucleus

PF

Parafascicular thalamic nucleus

PM

Premammillary nucleus

PMCo

Posteromedial cortical amygdaloid nucleus (C3)

PMR

Paramedian raphe nucleus

Pn1

Pontine nucleus

PnC

Pontine reticular nucleus, caudal part

PnO

Pontine reticular nucleus, oral part

Po

Primary olfactory cortex

Pr5

Principal sensory trigeminal nucleus

PVA

Paraventricular thalamic nucleus, anterior part

PVP

Paraventricular thalamic nucleus, posterior part

pyr

Pyramidal tract

R

Red nucleus

Re

Reuniens thalamic nucleus

Rh

Rhomboid thalamic nucleus

RMg

Raphe magnus nucleus

Rob

Raphe obscurus nucleus

RPa

Raphe pallidus nucleus

RPn

Raphe pontis nucleus

Rr

Retrorubral nucleus

RRf

Retrorubral field

Rt

Reticular thalamic nucleus

RtTg

Reticulotegmental nucleus, pons

s5

Sensory root of the trigeminal nerve

SC

Superior colliculus

scp

Superior cerebellar peduncle

SFi

Septofimbrial nucleus

SFO

Subfornical organ

SHi

Septohippocampal nucleus

SHy

Septohypothalamic nucleus

sm

Stria medullaris of the thalamus

SO

Superior olivary nucleus

So1

Nucleus of the solitary tract

SON

Supraoptic nucleus

Sp5

Spinal trigeminal tract

Sp5C

Spinal trigeminal nucleus, caudal part

SPF

Subparafascicular thalamic nucleus

st

Stria terminalis

STh

Subthalamic nucleus

StHy

Striohypothalamic nucleus

Su3

Supraoculomotor central gray

SuG

Superficial gray layer, superior colliculus

TS

Triangular septal nucleus

Tu

Olfactory tubercule

Tz

Nucleus of the trapezoid body

tz

Trapezoid body

VCo

Ventral cochlear nucleus

VDB

Nucleus of the vertical limb of the diagonal band

VL

Ventrolateral thalamic nucleus

VMH

Ventromedial hypothalamic nucleus

VP

Ventral pallidum

VPL

Ventral posterolateral thalamic nucleus

vtgx

Ventral tegmental decussation

xscp

Decussation of the superior cerebellar peduncle

ZI

Zona incerta

References

  1. Allen A. M., Chai S.-Y., Sexton P. M., Lewis S. J., Verberne A. J. M., Jarrott B., Louis W. J., Clevers, J., McKinley M. J., Paxinos G., and Mendelsohn F. A. O. (1987) Angiotensin II receptors and angiotensin converting enzyme in the medulla oblongata.Hypertension (Suppl. III)9, 198–205.Google Scholar
  2. Amara S. G., Evans R. M., and Rosenfeld M. G. (1984) Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites.Mol. Cell Biol. 4, 2151–2160.PubMedGoogle Scholar
  3. Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., and Evans R. M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products.Nature 298, 240–244.PubMedCrossRefGoogle Scholar
  4. Amara S. G., Arriza J. L., Leff S. E., Swanson L. W., Evans R. M., and Rosenfeld M. G. (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin generelated peptide.Science 229, 1094–1097.PubMedCrossRefGoogle Scholar
  5. Andrezik J. A. and Beitz A. J. (1985) Reticular formation, central gray and related tegmental nuclei:The Rat Central Nervous System, vol. 2. Hindbrain and Spinal Cord. Paxinos G., ed., Academic, Australia, pp. 1–28.Google Scholar
  6. Bird T. A. and Saklatvala J. (1986) Identification of a common class of high affinity receptors for both types of porcine interleukin-1 on connective tissue cells.Nature 324, 263–266.PubMedCrossRefGoogle Scholar
  7. Braga P., Ferri S., Santagostino A., Olgiati V. R., and Pecile A. (1978) Lack of opiate receptor involvement in centrally induced calcitonin analgesia.Life Sci. 22, 971–978.PubMedCrossRefGoogle Scholar
  8. Braun J. J., Lasiter P. S., and Keifer S. W. (1982) The gustatory neocortex of the rat.Physiol. Psychol.10, 13–45.Google Scholar
  9. Breeze A. L., Harvey T. S., Bazzo R., and Campbell I. D. (1991) Solution structure of human calcitonin gene-related peptide by proton NMR and distance geometry with restrained molecular dynamics.Biochemistry 30, 575–582.PubMedCrossRefGoogle Scholar
  10. Bueno L., Fioramont J. and Ferre J. P. (1983) Calcitonin—C.N.S. action to control the pattern of intestinal motility.Peptides 4, 63–66.PubMedCrossRefGoogle Scholar
  11. Chihara K., Iwasaki J., Iwasaki Y., Minamitani N., Kaji H., and Fujita T. (1982) Central nervous system effect of calcitonin: stimulation of prolactin release in rats.Brain Res. 248, 331–339.PubMedCrossRefGoogle Scholar
  12. Clementi G., Nicoletti F., Patacchioli F., Prato A., Patti F., Fiore C. E., Matera M., and Scapagnini V. (1983) Hypoprolactinemic action of calcitonin and the tuberoinfundibular dopaminergic system.Neurochemistry 40, 885,886.CrossRefGoogle Scholar
  13. Clementi G., Amico-Roxas M., Rapisarda E., Caruso A., Prato A., Trombadore S., Priolo G., and Scapagnini U. (1985) The analgesic activity of calcitonin and the central serotonergic system.Eur. J. Pharmacol. 108, 71–75.PubMedCrossRefGoogle Scholar
  14. Clementi G., Rapisarda E., Fiore C. E., Prato A., Amico-Roxas M., Millia C., Benardini R., Maugeri S., and Scapagnini U. (1986) Effects of salmon calcitonin on plasma renin activity and systolic blood pressure in the rat.Neurosci. Lett. 66, 351–355.PubMedCrossRefGoogle Scholar
  15. Czech M. P. (1982) Structural and functional homologies in the receptors for insulin and insulin-like growth factors.Cell 31, 8–10.PubMedCrossRefGoogle Scholar
  16. De Beaurepaire R., and Freed W. J. (1987a) Anatomical mapping of the rat hypothalamus for calcitonin induced anorexia.Pharmacol. Biochem. Behav. 27, 177–182.PubMedCrossRefGoogle Scholar
  17. De Beaurepaire R., and Freed W. J. (1987b) Regional localization of the antagonism of amphetamine-induced hyperactivity by intracerebral calcitonin injections.Pharmacol. Biochem. Behav. 27, 183–186.PubMedCrossRefGoogle Scholar
  18. Denis-Donini S. (1989) Expression of dopaminergic phenotypes in the mouse olfactory bulb induced by the calcitonin gene-related peptide.Nature 339, 701–703.PubMedCrossRefGoogle Scholar
  19. Dennis T., Fournier A., St-Pierre S., and Quirion R. (1989) Structure-activity profile of calcitonin generelated peptide in peripheral and brain tissues. Evidence for receptor multiplicity.J. Pharmacol. Exp. Ther. 251, 718–725.PubMedGoogle Scholar
  20. Dennis T., Fournier A., Guard S., St-Pierre S., and Quirion R. (1991) Calcitonin gene-related peptide (hCGRP-alpha) binding sites in nucleus accumbens. Atypical structural requirements and marked phylogentic differences.Brain Res. 539, 59–66.PubMedCrossRefGoogle Scholar
  21. Dennis T., Fournier A., Cadieux A., Pomerleau F., Jolicoeur F. B., St-Pierre S., and Quirion R. (1990) HCGRP8–37 a calcitonin gene-related peptide antagonist revealing CGRP receptor heterogeneity in brain and periphery.Pharmacol. Exp. Ther. 254, 123–128.Google Scholar
  22. Derynck R. (1988) Transforming growth factor x.Cell 54, 593–595.PubMedCrossRefGoogle Scholar
  23. Dotti-Sigrist S., Born W., and Fischer J. A. (1988) Identification of a receptor for calcitonin gene-related peptides I and II in human cerebellum.Biochem. Biophys. Res. Commun. 151, 1081–1087.PubMedCrossRefGoogle Scholar
  24. Dower S. K., Kronheim S. R., Hopp T. P., Cantrell M., Deeley M., Gillis S., Henney C. S., and Urdal D. L. (1986) The cell surface receptors for interleukin-1 alpha and interleukin-1 beta are identical.Nature 324, 266–268.PubMedCrossRefGoogle Scholar
  25. Elalouf J. M., Roinel N., and de Rouffignac C. (1986) Effects of human calcitonin on water and electrolyte movements in rat juxtamedullary nephrons: inhibition of medullary K recycling.Pflugers Arch. 406, 502–508.PubMedCrossRefGoogle Scholar
  26. Fabbri A., Fraioli F., Pert C. B., and Pert A. (1985) Calcitonin receptors in the rat mesencephalon mediate its analgesic actions: autoradiographic and behavioural analyses.Brain Res. 343, 205–215.PubMedCrossRefGoogle Scholar
  27. Fargeas M. J., Fioramonti J., and Bueno L. (1985) Calcitonin gene-related peptide: brain and spinal action on intestinal motility.Peptides 6, 1167–1171.PubMedCrossRefGoogle Scholar
  28. Findlay D. M., de Luise M., Michelangeli V. P., Ellison M., and Martin T. J. (1980) Properties of a calcitonin receptor and adenylate cyclase in a human cancer cell line (BEN cells).Cancer Res. 40, 1311–1317.PubMedGoogle Scholar
  29. Fischer J. A., Sagar S. M., and Martin J. B. (1981a) Characterization and regional distribution of calcitonin binding sites in the rat brain.Life Sci. 29, 663–671.PubMedCrossRefGoogle Scholar
  30. Fischer J. A., Tobler P. H., Kaufmann M., Born W., Henke H., Cooper P. E., Sagar S. M., and Martin J. B. (1981b) Calcitonin: regional distribution of the hormone and its binding sites in the human brain and pituitary.Proc. Natl. Acad. Sci. USA 78, 7801–7805.PubMedCrossRefGoogle Scholar
  31. Fischer J. A., Tobler P. H., Henke H., and Tschopp F. A. (1983) Salmon and human calcitoni-like peptides coexist in the human thyroid and brain.Clin. Endocrinol. Metab. 57, 1314–1316.Google Scholar
  32. Fisher L. A., Kikkawa D. O., Rivier J. E., Amara S. G., Evans R. M., Rosenfeld M. G., Vale W. W., and Brown M. R. (1983) Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide.Nature 305, 534–536.PubMedCrossRefGoogle Scholar
  33. Flynn J. J., Margules D. L., and Cooper C. W. (1981) Presence of immunoreactive calcitonin in the hypothalamus and pituitary lobes of rats.Brain Res. Bull. 6, 547–549.PubMedCrossRefGoogle Scholar
  34. Fontaine B., Klarsfeld A., Laufer R., Hokfelt T., and Changeux J. P. (1989) Role trophique possible sur la jonction neuromusculaire d'un neuropeptide coexistant avec l'acetylcholine dans les neurones moteurs de la moelle epiniere.Rev. Neurol. (Paris) 145, 194–200.Google Scholar
  35. Galan Galan F., Rogers R. M., Girgis S. I., and MacIntyre I. (1981) Immunoreactive calcitonin in the central nervous system of the pigeon.Brain Res. 212, 59–66.PubMedCrossRefGoogle Scholar
  36. Goltzman D. (1980) Examination of interspecies differences in renal and skeletal receptor binding and adenylate cyclase stimulation with human calcitonin.Endocrinology 106, 510–518.PubMedGoogle Scholar
  37. Goltzman D., and Mitchell J. (1985) Interaction of calcitonin and calcitonin gene-related peptide at receptor sites in target tissues.Science 227, 1343–1345.PubMedCrossRefGoogle Scholar
  38. Greely G. H., Cooper C. W., Jeng Y.-J, Eldridge J. C., and Thompson J. C. (1989) Intracerebroventricular administration of calcitonin enhances glucose-stimulated release of insulin.Regul. Peptides 24, 259–268.CrossRefGoogle Scholar
  39. Guidobono F., Netti C., and Pecile A. (1987) Calcitonin binding site distribution in the cat central nervous system: a wider insight of the peptide involvement in brain functions.Neuropeptides 10, 265–273.PubMedCrossRefGoogle Scholar
  40. Guidobono F., Netti C., Sibilia V., Zamboni A., and Pecile A. (1986) Eel calcitonin binding site distribution and antinociceptive activity in rats.Peptides 7, 315–322.PubMedCrossRefGoogle Scholar
  41. Guidobono F., Netti C., Bettica P., Sibilia V., Pagani F., Cazzamalli E., and Pecile A. (1989) Effects of age on binding sites for calcitonin gene-related peptide in the rat central nervous system.Neurosci. Lett. 102, 20–26.PubMedCrossRefGoogle Scholar
  42. Henke H., Tobler P. H., and Fischer J. A. (1983) Localization of salmon calcitonin binding sites in rat brain by autoradiography.Brain Res. 272, 373–377.PubMedCrossRefGoogle Scholar
  43. Henke H., Tschopp F. A., and Fischer J. A. (1985) Distinct binding sites for calcitonin gene-related peptide and salmon calcitonin in rat central nervous system.Brain Res. 360, 165–171.PubMedCrossRefGoogle Scholar
  44. Henke H., Sigrist S., Lang W., Schneider J., and Fischer J. A. (1987) Comparison of binding sites for the calcitonin gene-related peptides I and II in man.Brain Res. 410, 404–408.PubMedCrossRefGoogle Scholar
  45. Hill D. J., Freemark M., Strain A. J., Handwerger S., and Milner R. D. G. (1988) Placental lactogen and growth hormone receptors in human fetal tissues: relationships to fetal plasma human placental lactogen concentrations and fetal growth.J. Clin. Endocrinol. Metab. 66, 1283–1290.PubMedGoogle Scholar
  46. Hirata Y., Takagi Y., Takata S., Fukada Y., Yoshimi H., and Fujita T. (1988) Calcitonin gene-related peptide receptor in cultured vascular smooth muscle and endothelial cells.Biochem. Biophys. Res. Commun. 151, 1113–1121.PubMedCrossRefGoogle Scholar
  47. Hiroshima O., Sano Y., Yuzuriha T., Yamato C., Saito A., Okamura N., Uchiyama Y., Kimura S., and Goto K. (1988) Solubilization and characterization of calcitonin gene-related peptide binding site from porcine spinal cord.J. Neurochem. 50, 480–485.PubMedCrossRefGoogle Scholar
  48. Inagaki S., Kito S., Kubota Y., Girgis S. I., Hillyard C. J., and MacIntyre I. (1986) Autoradiographic localization of calcitonin gene-related peptide binding sites in human and rat brain.Brain Res. 374, 287–298.PubMedCrossRefGoogle Scholar
  49. Kawai Y., Takami K., Shiosaka S., Emson P. C., Hillyard C. J., Girgis S. I., MacIntyre I., and Tohyama M. (1985) Topographic localization of calcitonin gene-related peptide in the rat brain: an immunohistochemical analysis.Neuroscience 15, 747–763.PubMedCrossRefGoogle Scholar
  50. Kemp B. E., Moseley J. M. Rodda C. P., Ebeling P. R., Wettenhall R. E. H., Stapleton D., Diefenbach-Jagger H., Ure F., Michelangeli V. P., Simmons H. A., Raisz L. G. and Martin T. J. (1987) Parathyroid hormone related protein of malignancy, active synthetic fragments.Science 23, 1568–1570.CrossRefGoogle Scholar
  51. Krahn D. D., Gosnell B. A., Levine A. S., and Morley J. E. (1984) Effects of calcitonin gene-related peptide on food intake.Peptides,5, 861–864.PubMedCrossRefGoogle Scholar
  52. Kruger L., Mantyh P. W., Sternini C., Brecha N. C., and Mantyh C. R. (1988) Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites.Brain Res.,463, 223–244.PubMedCrossRefGoogle Scholar
  53. Lasmoles F., Jullienne A., Day F., Minvielle S., Milhaud G., and Moukhtar M. S. (1985) Elucidation of the nucleotide sequence of chicken calcitonin mRNA: direct evidence for the expression of a lower vertebrate calcitonin-like gene in man and rat.EMBO J. 4, 2603–2607.PubMedGoogle Scholar
  54. Lengyel A. J., and Tannenbaum G. S. (1987) Mechanisms of calcitonin-induced growth hormone (GH) suppression: roles of somatostatin and GH-releasing factor.Endocrinology 120, 1377–1383.PubMedGoogle Scholar
  55. Lenz H. J. (1988) Calcitonin and CGRP inhibit gastrointestinal transit via distinct neuronal pathways.Am.J. Physiol. 254, G920-G924.Google Scholar
  56. Lenz H. J., and Brown M. R. (1990) Cerebroventricular calcitonin gene-related peptide inhibits rat duodenal bicarbonate secretion by release of norepinephrine and vasopressin.J. Clin. Invest. 85, 25–32.PubMedCrossRefGoogle Scholar
  57. Lenz H. J., Mortrud M. T., Rivier J. E., and Brown M. R. (1985) Central nervous system actions of calcitonin gene-related peptide on gastric acid secretion in the rat.Gastroenterology 88 539–544.PubMedGoogle Scholar
  58. Lenz H. J., Klapdor R., Hester S. E., Webb V. J., Galyean R. F., Rivier J. E., and Brown M. R. (1986) Inhibition of gastric acid secretion by brain peptides in the dog. Role of the autonomic nervous system and gastrin.Gastroenterology,91, 905–912.PubMedGoogle Scholar
  59. Lin H. Y., Harris T. L., Flannery M. S., Aruffo A., Kaji E. H., Gorn A., Kolakowski L. F. Jr. Lodish H. F., and Goldring S. R. (1991) Expression cloning of an adenylate cyclase-coupled calcitonin receptor.Science 254, 1022–1024.PubMedCrossRefGoogle Scholar
  60. Lips C. J. M., Steenbergh P. H., Hoppener J. W. M., Bovenberg R. A. L. van der Sluys Veer J., and Jansz H. S. (1988) Evolutionary pathways of the calcitonin genes.Mol. Cell. Endocrinol. 57, 1–6.PubMedCrossRefGoogle Scholar
  61. MacInnes D. G., Laszlo I., MacIntyre I., and Fink G. (1982) Salmon calcitonin in lizard brain: a possible neuroendocrine transmitter.Brain Res. 251, 371–373.PubMedCrossRefGoogle Scholar
  62. Martin T. J., Ng K. W., and Nicholson G. C. (1988) Cell biology of bone, inClinical Endocrinology and Metabolism. Metabolic Bone Disease vol. 2, Martin T. J., ed., Bailliere Tindall, London, pp. 1–30.Google Scholar
  63. Meadows R. P., Nikonowicz E. P., Jones C. R., Bastian J. W., and Gorenstein D. G. (1991) Two-dimensional NMR and structure determination of salmon calcitonin in methanol.Biochemistry 30, 1247–1254.PubMedCrossRefGoogle Scholar
  64. Moyauchi T., Sano Y., Hiroshima O, Yuzuriha T., Sugishita Y., Ishikawa T., Saito A., and Goto K. (1988) Positive inotropic effects and receptors of calcitonin gene-related peptide (CGRP) in porcine ventricular muscles.Biochem. Biophys. Res. Commun. 155, 289–294.CrossRefGoogle Scholar
  65. Morimoto T., Okamoto M., Koida M. Nakamuta H., Stahl G. L., and Orlowski R. C. (1985) Intracerebroventricular injection of125I-salmon calcitonin in rats: fate, anorexia and hypocalcemia.Japan J. Pharmacol. 37, 21–29.CrossRefGoogle Scholar
  66. Morley J. E., Levine A. S., and Silvis S. E. (1981) Intraventricular calcitonin inhibits gastric acid secretion.Science 214 671–673.PubMedCrossRefGoogle Scholar
  67. Morton C. R., Maisch B., and Zimmermann M. (1986) Calcitonin brainstem microinjection but not systemic administration inhibits spinal nociceptive transmission in the cat.Brain Res. 372, 149–154.PubMedCrossRefGoogle Scholar
  68. Nakamuta H., Orlowski R. C., and Epand R. M. (1990) Evidence for calcitonin receptor heterogeneity: binding studies with nonhelical analogs.Endocrinology 127, 163–169.PubMedCrossRefGoogle Scholar
  69. Nakamuta H., Furukawa S., Koida M., Yajima H., Orlowski R. C., and Schlueter R. (1981) Specific binding of125I-salmon CT to rat brain: regional variation and calcitonin specificity.Japan. J. Pharmacol. 31, 53–60.CrossRefGoogle Scholar
  70. Niall H. D. (1982) The evolution of peptide hormones.Ann. Rev. Physiol. 44, 615–624.CrossRefGoogle Scholar
  71. Nicholson G. C., Moseley J. M., Sexton P. M., and Martin T. J. (1987) Characterization of calcitonin receptors and cyclic AMP responses in isolated osteoclasts.Calcium and Bone Metabolism: Basic and Clinical Aspects, vol. 9. Cohn D. V., Martin T. J., and Meunier P. J., eds., Elsevier Science Publishers, Amsterdam, pp. 343–348.Google Scholar
  72. Nicholson G. C., Moseley J. M., Sexton P. M., Mendelsohn F. A. O., and Martin T. J. (1986) Abundant calcitonin receptors in isolated rat osteoclasts: biochemical and autoradiographic characterization.J. Clin. Invest. 78, 355–360.PubMedCrossRefGoogle Scholar
  73. Nicosia S., Guidobono F., Musanti M., and Pecile A. (1986) Inhibitory effects of calcitonin on adeny late cyclase activity in different rat brain areas.Life Sci. 39, 2253–2262.PubMedCrossRefGoogle Scholar
  74. Nicoletti F., Clementi G., Patti F., Canonico P. L., Di Gorgio, R. M., Matera M., Pennisi G., Angelucci L., and Scapagnini U. (1982) Effects of calcitonin on rat extrapyramidal motor system. Behavioural and biochemical data.Brain Res. 250, 381–385.PubMedCrossRefGoogle Scholar
  75. Olgiati V. R., Guidobono F., Netti, C., and Pecile A. (1983) Localization of calcitonin binding sites in rat central nervous system: evidence of its neuroactivity.Brain Res. 265, 209–215.PubMedCrossRefGoogle Scholar
  76. Olgiati V. R., Guidobono F, Luisetto G., Netti C., Biandni C., and Pecile A. (1981) Calcitonin inhibition of physiological and stimulated prolactin secretion in rats.Life Sci. 29, 585–594.PubMedCrossRefGoogle Scholar
  77. Orlowski R. C., Epand R. M., and Stafford A. R. (1987) Biologically potent analogues of salmon CT which do not contain an N-terminal disulfide-bridged structure.Eur. J. Biochem. 162, 399–402.PubMedCrossRefGoogle Scholar
  78. Patel J., Fabbri A., Pert C., Gnessi L., Fraioli F., and McDevitt R. (1985) Calcitonin inhibits the phosphorylation of various proteins in rat brain synaptic membranes.Biochem. Biophys. Res. Commun. 130, 669–676.PubMedCrossRefGoogle Scholar
  79. Perez Cano R., Girgis S. L., and MacIntyre I. (1982a) Further evidence for calcitonin gene duplication: the identification of two different calcitonins in a fish, a reptile and two mammals.Acta Endocrinol. 100, 256–261.PubMedGoogle Scholar
  80. Perez Cano R., Girgis S. I., Galan Galan F., and MacIntyre I. (1982b) Identification of both human and salmon calcitonin-like molecules in birds suggesting the existence of two calcitonin genes.J. Endocrinol. 92, 351–355.PubMedGoogle Scholar
  81. Perez Cano R., Galan Galan F., Girgis S. I., Arnett T. R., and MacIntyre I. (1981) A human calcitonin-like molecule in the ultimobranchial body of the amphibia (Rang pipiens).Experentia 37, 1116, 1117.CrossRefGoogle Scholar
  82. Plata-Salaman C. R. and Oomura Y. (1987) Calcitonin as a feeding suppressant: localization of central action to cerebral III ventricle.Physiol. Behav. 40, 501–513.PubMedCrossRefGoogle Scholar
  83. Prieto G. J., Cannon J. T., and Leibeskind J. C. (1983) Raphe magnus lesions disrupt stimulation produced analgesia from ventral but not dorsal midbrain areas in the rat.Brain Res. 261, 53–57.PubMedCrossRefGoogle Scholar
  84. Rapisarda E., Clementi G., Fiore L., Prato A., Ceravolo A., Raffaele R., and Clapagnini U. (1984) Effect of calcitonin on ACTH secretion.Pharmacol. Res. Commun. 16, 1151–1159.PubMedCrossRefGoogle Scholar
  85. Rizzo A. J. and Goltzman D. (1981) Calcitonin receptors in the central nervous system of the rat.Endocrinology 108, 1672–1677.PubMedGoogle Scholar
  86. Rodrigo J., Polak J. M., Terenghi G., Cervantes C., Ghatei M. A., Mulderry P. K., and Bloom S. R. (1985) Calcitonin gene-related peptide (CGRP)-immunoreactive sensory and motor nerves of the mammalian palate.Histochemistry 82, 67–74.PubMedCrossRefGoogle Scholar
  87. Rosenfeld M.G., Mermod J.-J., Amara S. G., Swanson L. W., Sawchenko P.E., Rivier J., Vale W. W., and Evans R. M. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissuesspecific RNA processing.Nature 304, 129–135.PubMedCrossRefGoogle Scholar
  88. Sabbatini F., Fimmel C. J., Pace F., Tobler P. H., Hinder R. A., Blum A.L., and Fischer J. A. (1985) Distribution of intraventricular salmon calcitonin and suppression of gastric acid secretion.Digestion 32, 273–281.PubMedGoogle Scholar
  89. Sagar S. M., Henke H., and Fischer J. A. (1984) Calcitonin and calcitonin gene-related peptide in the human brain.Psychopharmacol. Bull. 20, 447–450.PubMedGoogle Scholar
  90. Sano Y., Hiroshima O., Yuzuriha T., Yamato C., Saito A., Kimura S., Hirabayashi T., and Goto K. (1989) Calcitonin gene-related peptide-binding sites of porcine cardiac muscles and coronary arteries: solubilization and characterization.J. Neurochem. 52, 1919–1924.PubMedCrossRefGoogle Scholar
  91. Seifert H., Chesnut J., de Souza E., Rivier J., and Vale W. W. (1985) Binding sites for calcitonin gene-related peptide in distinct areas of rat brain.Brain Res. 346, 195–198.PubMedCrossRefGoogle Scholar
  92. Sexton P. M., McKenzie J. S., and Mendelsohn F. A. O. (1988) Evidence for a new subclass of calcitonin/calcitonin gene-related peptide binding site in rat brain.Neurochem. Int. 12, 323–335.CrossRefGoogle Scholar
  93. Sexton P. M., Adam W. R., Moseley J. M., Martin T. J., and Mendelsohn F. A. O. (1987) Localization and characterization of renal calcitonin receptors byin vitro autoradiography.Kidney Int. 32, 862–868.PubMedCrossRefGoogle Scholar
  94. Sexton P. M., McKenzie J. S., Mason R. T., Moseley J. M., Martin T. J., and Mendelsohn F. A. O. (1986) Localization of binding sites for calcitonin gene-related peptide byin vitro autoradiography.Neuroscience 19, 1235–1245.PubMedCrossRefGoogle Scholar
  95. Sexton P. M., D'Santos C. S., Mendelsohn F. A. O., Schneider H.-G., Findlay D. M., Kemp B. E., and Moseley J. M. (1990) Characterization of sheep brain calcitonin receptors.Calcium Regulation and Bone Metabolism. Basic and Clinical Aspects, vol. 10. Cohn D. V., Glorieux F. H., and Martin T. J., eds., Elsevier Science Publishers, Amsterdam, pp. 57–63.Google Scholar
  96. Sexton P. M., Schneider H.-G., D'Santos C. S., Mendelsohn F. A. O., Kemp B. E., Moseley J. M., Martin T. J., and Findlay D. M. (1991) Reversible calcitonin binding to solubilized sheep brain binding sites.Biochem. J. 273, 179–184.PubMedGoogle Scholar
  97. Shimizu N. and Oomura Y. (1986) Calcitonin-induced anorexia in rats: evidence for its inhibitory action on lateral hypothalamic chemosensitive neurons.Brain Res. 367, 128–140.PubMedCrossRefGoogle Scholar
  98. Skofitsch G. and Jacobowitz D. M. (1985a) Autoradiographic distribution of125I calcitonin generelated peptide binding sites in the rat central nervous system.Peptides 6, 975–986.PubMedCrossRefGoogle Scholar
  99. Skofitsch G. and Jacobowitz D. M. (1985b) Calcitonin gene-related peptide: detailed immunohistochemical distribution in the rat central nervous system.Peptides 6, 721–745.PubMedCrossRefGoogle Scholar
  100. Steenbergh P. H., Hoppener J. W. M., Zandberg J., Lips C. J. M., and Jansz H. S. (1985) A second human calcitonin/CGRP gene.FEBS Lett. 183, 403–407.PubMedCrossRefGoogle Scholar
  101. Tache Y., Gunion M., Lauffenberger M., and Goto Y. (1984) Inhibition of gastric acid secretion by intracerebral cnjection of calcitonin gene-related peptide in rats.Life Sci. 35, 871–878.PubMedCrossRefGoogle Scholar
  102. Takami K., Kawai Y., Shiosaka S., Lee Y., Girgis S. I., Hillyard C. J., MacIntyre I., Emson P. C., and Tohyama M. (1985a) Immunohistochemical evidence for the existence of calcitonin gene-related peptide—and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguus nuclei.Brain Res. 328, 386–389.PubMedCrossRefGoogle Scholar
  103. Takami K., Kawai Y., Uchida S., Tohyama M., Shiotani Y., Yoshida H., Emson P. C., Girgis S. I., Hillyard C. J., and MacIntyre I. (1985b) Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse.Neurosci. Lett. 60, 227–230.PubMedCrossRefGoogle Scholar
  104. Tam J. P., Marquardt H., Rosberger D. F., Wong T. W., and Todaro G. J. (1984) Synthesis of biologically active rat transforming growth factor 1.Nature 309, 376–378.PubMedCrossRefGoogle Scholar
  105. Tannenbaum G. S. and Goltzman D. (1985) Calcitonin gene-related peptide mimics calcitonin actions in brain on growth hormone release and feeding.Endocrinology 116, 2685–2687.PubMedGoogle Scholar
  106. Tschopp F. A., Henke H., Petermann J. B., Tobler P. H., Janzer R., Hokfelt T., Lundberg J. M., Cuello C., and Fischer J. A. (1985) Calcitonin gene-related peptide and its binding sites in the human central nervous system and pituitary.Proc. Natl. Acad. Sci. USA 82, 248–252.PubMedCrossRefGoogle Scholar
  107. Twery M. J., Kirkpatrick B., Lewis M. H., Mailman R. B., and Cooper C. W. (1986a) Antagonistic behavioral effects of calcitonin and amphetamine in the rat.Pharmacol. Biochem. Behav. 24, 1203–1207.PubMedCrossRefGoogle Scholar
  108. Twery M. J., Kirkpatrick B., Critcher E. C., Lewis M. H., Mailman R. B., and Cooper C. W. (1986b) Motor effects of calcitonin administered intracerebro-ventricularly in the rat.Eur. J. Pharmacol. 121, 189–198.PubMedCrossRefGoogle Scholar
  109. Twery M. J., Seitz P. K., Nickols G. A., Cooper C. W., Gallagher J. P., and Orlowski R. C. (1988) Analogue separates biological effects of salmon calcitonin on brain and renal cortical membranes.Eur. J. Pharmacol. 155, 285–292.PubMedCrossRefGoogle Scholar
  110. Vallejo M., Lightman S., and Marshall I. (1988) Central cardiovascular effects of calcitonin gene-related peptide: interaction with noradrenaline in the nucleus tractus solitarius of rats.Exp. Brain Res. 70, 221–224.PubMedGoogle Scholar
  111. Van Houten M., Rizzo A. J., Goltzman D., and Posner B. I. (1982) Brain receptors for blood-borne calcitonin in rats: circumventricular localization and vasopressin-resistant deficiency in hereditary diabetes insipidus.Endocrinology 111, 1704–1710.PubMedGoogle Scholar
  112. Watahiki M., Yamamoto M., Yamakawa M., Tanaka M., and Nakashima K. (1989) Conserved and unique amino acid residues in the domains of the growth hormones. Flounder growth hormones deduced from the cDNA sequence has the minimal size in the growth hormone prolactin gene family.J. Biol. Chem. 264, 312–316.PubMedGoogle Scholar
  113. Welch S. P., Cooper C. W., and Dewey W. L. (1986) Antinociceptive activity of salmon calcitonin injected intraventricularly in mice: modulation of morphine antinociception.J. Pharmacol. Exp. Ther. 237, 54–58.PubMedGoogle Scholar
  114. Yoshizaki H., Takamiya M., and Okada T. (1987) Characterization of picomolar affinity binding sites for [125I]human calcitonin gene-related peptide in rat brain and heart.Biochem. Biophys. Res. Commun. 146, 443–451.PubMedCrossRefGoogle Scholar
  115. Zaidi M., Moogna B. S., Bevis P. S., Bascal Z. A., and Breimer L. H. (1990) The calcitonin gene peptides: biology and clinical relevance.Crit. Rev. Clin. Lab. Sci. 28, 109–174.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Patrick M. Sexton
    • 1
  1. 1.St. Vincent's Institute of Medical ResearchFitzroyAustralia

Personalised recommendations