Advertisement

Molecular Neurobiology

, Volume 5, Issue 2–4, pp 203–216 | Cite as

Mechanisms of synaptic plasticity

Changes in postsynaptic densities and glutamate receptors in chicken forebrain during maturation
  • J. A. P. Rostas
  • J. M. Kavanagh
  • P. R. Dodd
  • J. W. Heath
  • D. A. Powis
Basic Molecular Aspects of Synaptic Plasticity

Abstract

We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of theN-methyl-d-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca2+-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process.

The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level.

Index Entries

Maturation plasticity chicken brain rat brain superior cervical ganglion postsynaptic density ultrastructure calcium/calmodulin-stimulated protein kinase II glutamate receptors NMDA kainic acid AMPA MK-801 calcium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian G. N. and Bloom F. E. (1967) The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study.Brain Res. 6, 716–727.PubMedCrossRefGoogle Scholar
  2. Barday A. N. (1979) Localisation of the Thy-1 antigen in the cerebellar cortex of rat brain by immunofluorescence during postnatal development.J. Neurochem. 32, 1249–1259.CrossRefGoogle Scholar
  3. Bloom F. E. and Aghajanian G. K. (1966) Cytochemistry of synapses: selective staining for electron microscopy.Science 154, 1575–1577.PubMedCrossRefGoogle Scholar
  4. Blue M. E. and Parnavelas J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat II. Quantitative analysis.J. Neuropsychol. 12, 697–712.Google Scholar
  5. Carlin R. K. and Siekevitz P. (1983) Plasticity in the central nervous system: do synapses divide?Proc. Natl. Acad. Sci. USA 80, 3517–3521.PubMedCrossRefGoogle Scholar
  6. Carlin R. K. and Siekevitz P. (1984) Characterisation of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum.J. Neurochem. 43, 1011–1017.PubMedCrossRefGoogle Scholar
  7. Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Sci. 11, 290–296.PubMedCrossRefGoogle Scholar
  8. Colonnier M. (1968) Synaptic patterns of different cell types in the different laminae of the visual cortex. An electron microscopic study.Brain Res. 9, 268–287.PubMedCrossRefGoogle Scholar
  9. Cotman C. W. and Kelly P. T. (1980) Macromolecular architecture of CNS synapses.The Cell Surface and Neuronal Function. Cotman C. W., Poste G., and Nicolson G. L. eds., Elsevier, North Holland Biomedical Press, Amsterdam, pp. 505–533.Google Scholar
  10. Cotman C. W. and Nieto-Sampedro M. (1984) Cell biology of synaptic plasticity.Science 225, 1287–1294.PubMedCrossRefGoogle Scholar
  11. Crick F. (1982) Do dendritic spines twitch?Trends Neurosci. 5, 44–46.CrossRefGoogle Scholar
  12. Dyson S. E. and Jones D. G. (1984) Synaptic remodelling during development and maturation: Functional differentiation and splitting as a mechanism for modifying connectivity.Brain Res. 315, 125–137.PubMedGoogle Scholar
  13. Erondu N. E. and Kennedy M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci. 5, 3270–3277.PubMedGoogle Scholar
  14. Fagg G. E. and Matus A. (1984) Selective association of N-methylaspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities.Proc. Natl. Acad. Sci. USA 81, 6876–6880.PubMedCrossRefGoogle Scholar
  15. Foster A. C. and Wong E. H. F. (1987) The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain.Br. J. Pharmacol. 91, 403–409.PubMedGoogle Scholar
  16. Fu S. C., Cruz T. F., and Gurd J. W. (1981) Development of synaptic glycoproteins: Effective postnatal age on the synthesis and concentration of synaptic membrane and synaptic junctional fucosyl and sialyl glycoproteins.J. Neurochem. 36, 1338–1351.PubMedCrossRefGoogle Scholar
  17. Gulley R. L. and Reese T. S. (1981) Cytoskeletal organisation at the postsynaptic complex.J. Cell Biol. 91, 298–302.PubMedCrossRefGoogle Scholar
  18. Gurd J. W. (1982) Molecular characterisation of synapses in the central nervous system.Molecular Approaches to Neurobiology. Brown I. R., ed. Academic, New York, pp. 99–130.Google Scholar
  19. Gurd J. W. (1989) Glycoproteins of the synapse.Neurobiology of Glycoconjugates. Margolis R. K. and Margolis R. U., eds. Plenum, New York, pp. 219–242.Google Scholar
  20. Heath J. W., Glenfield P. J., and Rostas J. A. P. (1992) Structural maturation of synapses in the rat superior cervical ganglion continues beyond four weeks of age.Neurosci. Lett. in press.Google Scholar
  21. Horn G., Bradley P., and McCabe B. J. (1985) Changes in the structure of synapses associated with learning.J. Neurosci. 5, 3161–3168.PubMedGoogle Scholar
  22. Kavanagh J. M., Dodd P. R., and Rostas J. A. P. (1992a) [3H]MK-801 binding in immature and mature chicken forebrainNeurosci. Lett. in press.Google Scholar
  23. Kavanagh J. M., Powis D. A., Dodd P. R., and Rostas J. A. P. (1992b) NMDA receptor function in chicken forebrain during maturation.Mol. Neuropharmacol., in press.Google Scholar
  24. Kelly, P. T. and Cotman C. W. (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures.Brain Res. 206, 251–271.PubMedCrossRefGoogle Scholar
  25. Kelly P. T., Cotman C. W., Gentry C., and Nicolson G. (1976) Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system.J. Cell Biol. 71, 487–496.PubMedCrossRefGoogle Scholar
  26. Kelly P. T., Shields S., Conway K., Yip R., and Burgin K. (1987) Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: Alterations in holoenzyme composition.J. Neurochem. 49, 1927–1940.PubMedCrossRefGoogle Scholar
  27. Kelly P. T. and Vernon P. (1985) Changes in subcellular distribution of calmodulin kinase II during brain development.Dev. Brain Res. 18, 211–224.CrossRefGoogle Scholar
  28. Koszka C., Brent V. A., and Rostas J. A. P. (1991) Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerized microtubules from chicken brain.Neurochem. Res. 15, 637–644.CrossRefGoogle Scholar
  29. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., and Barker J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.Nature 321, 519–522.PubMedCrossRefGoogle Scholar
  30. McCabe B. J. and Horn G. (1988) Learning and memory: Regional changes in N-methyl-D-aspartate receptors in the chick brain after imprinting.Proc. Natl. Acad. Sci. USA 85, 2849–2853.PubMedCrossRefGoogle Scholar
  31. Markus E. J., Petit T. L., and LeBoutillier J. B. (1987) Synaptic structural changes during development and ageing.Dev. Brain Res. 35, 239–248.CrossRefGoogle Scholar
  32. Matus A., Pehling G., and Wilkinson D. (1981). Gamma-aminobutyric acid receptors in brain postsynaptic densities.J. Neurobiol. 12, 67–73.PubMedCrossRefGoogle Scholar
  33. Matus A. and Walters B. B. (1976) Type I and II synaptic junctions: Differences in distribution of Concanavalin A binding sites and stability of the junctional adhesion.Brain Res. 108, 249–256.PubMedCrossRefGoogle Scholar
  34. Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., and Sakmann B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.Nature 321, 406–411.PubMedCrossRefGoogle Scholar
  35. Monaghan D. T. and Cotman C. W. (1986) Identification and properties of N-methyl-d-aspartate receptors in rat brain synaptic plasma membranes.Proc. Natl. Acad. Sci. USA 83, 7532–7536.PubMedCrossRefGoogle Scholar
  36. Morris R. J. (1985) Thy-1 indeveloping nervous tissue.Dev. Neurosci. 7, 133–160.PubMedCrossRefGoogle Scholar
  37. Nieto-Sampedro M., Hoff S. F., and Cotman C. W. (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover.Proc. Natl. Acad. Sci. USA 79, 5718–5722.PubMedCrossRefGoogle Scholar
  38. Ouimet C. C., McGuinness T. L., and Greengard P. (1984) Immunocytochemical localisation of calcium/calmodulin dependent protein kinase II in rat brain.Proc. Natl. Acad. Sci. USA 81, 5604–5608.PubMedCrossRefGoogle Scholar
  39. Ransom R. W. and Stec N. L. (1988) cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines.J. Neurochem. 51, 830–836.PubMedCrossRefGoogle Scholar
  40. Riveros N. and Orrego F. (1986) N-methylaspartate-activated calcium channels in rat brain cortex slices. Effect of calcium channel blockers and of inhibitory and depressant substances.Neuroscience 17, 541–546.PubMedCrossRefGoogle Scholar
  41. Rostas J. A. P. (1991) Molecular mechanisms of neuronal maturation: A model for synaptic plasticity.Neural and Behavioural Plasticity. Andrew R. J., ed. Oxford University Press, pp. 177–211.Google Scholar
  42. Rostas J. A. P., Baker C. M., Weinberger R. P., and Dunkley P. R. (1987) Changes in the pre-and postsynaptic calmodulin stimulated protein kinase II during development in chicken forebrain.J. Neurochem. 48, 515A.Google Scholar
  43. Rostas J. A. P., Brent V. A., and Guldner F. H. (1984) The maturation of postsynaptic densities in chicken forebrain.Neurosci. Lett. 45, 297–304.PubMedCrossRefGoogle Scholar
  44. Rostas J. A. P. and Dunkley P. R. (1992) Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain.J. Neurochem. in pressGoogle Scholar
  45. Rostas J. A. P., Kelly P. T., Pesin R. H., and Cotman C. W. (1979) Protein and glycoprotein composition of synaptic junctions prepared from discrete synaptic regions and different regions.Brain Res. 168, 151–167.PubMedCrossRefGoogle Scholar
  46. Rostas J. A. P., Weinberger R. P., and Dunkley P. R. (1986) Multiple pools and multiple forms of calmodulin stimulated protein kinase during development: Relationship to postsynaptic densities.Prog. Brain Res. 69, 355–371.PubMedCrossRefGoogle Scholar
  47. Sedman G. L., Jeffrey P. L., Austin L., and Rostas J. A. P. (1986) The metabolic turnover of the major proteins of the postsynaptic density.Mol. Brain Res. 1, 221–230.CrossRefGoogle Scholar
  48. Siekevitz P. (1985) The postsynaptic density: A possible role in long lasting effects in the central nervous system.Proc. Natl. Acad. Sci. USA 82, 3494–3498.PubMedCrossRefGoogle Scholar
  49. Sinclair C. M., Greig D. L., and Jeffrey P. L. (1987) Developmental appearance of Thy-1 antigen in the avian nervous system.Dev. Brain Res. 35, 43–53.CrossRefGoogle Scholar
  50. Smolen A. J. (1981) Postnatal development of ganglionic neurons in the absence of preganglionic input: Morphological observations on synapse formation.Dev. Brain Res. 1, 49–58.CrossRefGoogle Scholar
  51. Snider W. D. (1986) Rostrocaudal differences in dendritic growth and synaptogenesis in rat sympathetic chain ganglia.J. Comp. Neurol. 244, 245–253.PubMedCrossRefGoogle Scholar
  52. Sommer B., Keinanen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  53. Walaas S. I., Nairn A. C., and Greengard P. (1983a) Regional distribution of calcium and cyclic AMP regulated protein phosphorylation systems in mammalian brain I: Particulate systems.J. Neurosci. 3, 291–301.PubMedGoogle Scholar
  54. Walaas S. I., Nairn A. C., and Greengard P. (1983b) Regional distribution of calcium and cyclic AMP regulated protein phsophorylation systems in mammalian brain II: Soluble systems.J. Neurosci. 3, 302–311.PubMedGoogle Scholar
  55. Weinberger R. P. and Rostas J. A. P. (1986) Subcellular distribution of a calmodulin dependent protein kinase activity in rat cerebral cortex during development.Dev. Brain Res. 29, 37–50.CrossRefGoogle Scholar
  56. Weinberger R. P. and Rostas J. A. P. (1988) Developmental changes in protein phosphorylation in chicken forebrain II: Calmodulin stimulated phosphorylation.Dev. Brain Res. 43, 259–272.CrossRefGoogle Scholar
  57. Wolff R. (1976) Quantitative analysis of topography and development of synapses in the visual cortex.Exp. Brain Res. Suppl. 1, 259–263.Google Scholar
  58. Wolff J. R. (1978) Ontogenic aspects of cortical architecture: Lamination.Architectonics of the Cerebral Cortex. M. A. B. Brazier and H. J. Petch, eds., Raven, New York, pp. 159–173.Google Scholar
  59. Wong E. H. F., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., and Iversen L. L. (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist.Proc. Natl. Acad. Sci. USA 83, 7104–7108.PubMedCrossRefGoogle Scholar
  60. Wu K., Carlin R. K., Sachs L., and Siekevitz P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding.Brain Res. 360, 183–194.PubMedCrossRefGoogle Scholar
  61. Wu K., Carlin R. K., and Siekevitz P. (1986a) Binding of L-[3H]-glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain.J. Neurochem. 46, 831–841.PubMedCrossRefGoogle Scholar
  62. Wu K., Sachs L., Carlin R. K., and Siekevitz P. (1986b) Characteristics of a Ca2+/calmodulin-dependent binding of the Ca2+ channel antagonist nitrendipine to a postsynaptic density fraction isolated from canine cerebral cortex.Mol. Brain Res. 1, 167–184.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • J. A. P. Rostas
    • 1
  • J. M. Kavanagh
    • 1
  • P. R. Dodd
    • 2
  • J. W. Heath
    • 1
  • D. A. Powis
    • 1
  1. 1.The Neuroscience Group, Faculty of MedicineUniversity of NewcastleCallaghanAustralia
  2. 2.Wilson Memorial Clinical Research LaboratoryRoyal Brisbane Hospital FoundationHerstonAustralia

Personalised recommendations