Advertisement

Journal of Genetics

, 85:237 | Cite as

Antioxidative response mechanisms in halophytes: Their role in stress defence

  • M. N. Jithesh
  • S. R. Prashanth
  • K. R. Sivaprakash
  • Ajay K. ParidaEmail author
Review article

Abstract

Normal growth and development of plants is greatly dependent on the capacity to overcome environmental stresses. Environmental stress conditions like high salinity, drought, high incident light and low or high temperature cause major crop losses worldwide. A common denominator in all these adverse conditions is the production of reactive oxygen species (ROS) within different cellular compartments of the plant cell. Plants have developed robust mechanisms including enzymatic or nonenzymatic scavenging pathways to counter the deleterious effects of ROS production. There are a number of general reviews on oxidative stress in plants and few on the role of ROS scavengers during stress conditions. Here we review the regulation of antioxidant enzymes during salt stress in halophytes, especially mangroves. We conclude that (i) antioxidant enzymes protect halophytes from deleterious ROS production during salt stress, and (ii) genetic information from mangroves and other halophytes would be helpful in defining the roles of individual isoforms. This information would be critical in using the appropriate genes for oxidative stress defence for genetic engineering of enhanced stress tolerance in crop systems.

Keywords

abiotic stress reactive oxygen species halophytes mangroves antioxidants 

References

  1. Alia P. S. P., Pardha Saradhi P. and Mohanty P. 1991 Proline enhances primary photochemical activities in isolated thylakoid membranes ofBrassica juncea by arresting photoinhibitory damage.Biochem. Biophys. Res. Commun. 181, 1238–1244.PubMedCrossRefGoogle Scholar
  2. Alscher R. A., Erturk N. and Heath L. S. 2002 Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.J. Exp. Bot. 53, 1331–1341.PubMedCrossRefGoogle Scholar
  3. Apse M. P., Aharon G. S., Snedden W. A. and Blumwald E. 1999 Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport inArabidopsis.Science 285, 1256–1258.PubMedCrossRefGoogle Scholar
  4. Arora A., Sairam R. K. and Srivastava G. C. 2002 Oxidative stress and antioxidative systems in plants.Curr. Sci. 82, 1227–1238.Google Scholar
  5. Asada K. 1999 The water—water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons.Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601–639.PubMedCrossRefGoogle Scholar
  6. Asada K. and Takahashi M. 1987 Production and scavenging of active oxygen in photosynthesis. InPhotoinhibition: topics in photosynthesis (ed. C. J. Arntzen), pp. 227–287. Elsevier, Amsterdam.Google Scholar
  7. Askari H., Edqvist J., Hajheidari M., Kafi M. and Salekdeh G. H. 2006 Effects of salinity levels on proteome ofSuaeda aegyptiaca leaves.Proteomics 6, 2542–2554.PubMedCrossRefGoogle Scholar
  8. Ball M. C. and Farquhar G. D. 1984 Photosynthetic and stomatal responses of two mangrove species,Aegiceras corniculatum andAvicennia marina, to long term salinity and humidity conditions.Plant Physiol. 74, 1–6.PubMedGoogle Scholar
  9. Banzai T., Hershkovits G., Katcoff D. J., Hanagata N., Dubinsky Z. and Karube I. 2002 Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove,Bruguiera gymnorrhiza.Plant Sci. 162, 499–505.CrossRefGoogle Scholar
  10. Beauchamp C. O. and Fridovich I. 1971 Superoxide dismutase: improved assay and an assay applicable to acrylamide gels.Anal. Biochem. 44, 276–287.PubMedCrossRefGoogle Scholar
  11. Ben Amor N., Ben Hamed K., Debez A., Grignon C. and Abdelly C. 2005 Physiological and antioxidant responses of the perennial halophyteCrithmum maritimum to salinity.Plant Sci. 68, 889–899.Google Scholar
  12. Bi J. L. and Felton G. W. 1995 Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance.J. Chem. Ecol. 21, 1511–1530.CrossRefGoogle Scholar
  13. Blumwald E. and Poole R. J. 1985 Na+/H+Antiport in isolated tonoplast vesicles from storage tissue ofBeta vulgaris.Plant Physiol. 78, 163–167.PubMedCrossRefGoogle Scholar
  14. Bohnert H. J. and Jensen R. G. 1996 Strategies for engineering water-stress tolerance in plants.Trends Biotechnol. 14, 89–97.CrossRefGoogle Scholar
  15. Borland A., Elliott S., Patterson S., Taybi T., Cushman J., Pater B. and Barnes J. 2006 Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden?J. Exp. Bot. 57, 319–328.PubMedCrossRefGoogle Scholar
  16. Borsani O., Valpuesta V. and Botella M. A. 2003 Developing salt tolerant plants in a new century: a molecular biology approach.Plant Cell Tissue Organ Cult. 73, 101–115.CrossRefGoogle Scholar
  17. Bowler C., Van Montagu M. and Inzé D. 1992 Superoxide dismutase and stress tolerance.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.CrossRefGoogle Scholar
  18. Burchett M. D., Clark C. J., Field D. C. and Pulkownik A. 1989 Growth and respiration in two mangrove species at a range of salinities.Physiol. Plantarum 75, 299–303.CrossRefGoogle Scholar
  19. Canvin D. T. 1990 Photorespiration and CO2 concentrating mechanisms. InPlant physiology, biochemistry and molecular biology (ed. D. T. Dennis and D. H. Turpin), pp. 253–273. Longman Scientific and Technical, Harlow.Google Scholar
  20. Cavalcanti F. R., Santos Lima J. P., Ferreira-Silva S. L., Viegas R. A. and Silveira J. A. 2006 Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea.J Plant Physiol. DOI:10.1016/j.jplph.2006.03.004.Google Scholar
  21. Cheeseman J. M., Herendeen L. B., Cheeseman A. T. and Clough B. F. 1997 Photosynthesis and photoprotection in mangroves under field conditions.Plant Cell Environ. 20, 579–588.CrossRefGoogle Scholar
  22. Chen T. H. H. and Murata N. 2002 Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes.Curr. Opin. Plant Biol. 5, 250–257.PubMedCrossRefGoogle Scholar
  23. Cherian S. and Reddy M. P. 2003 Evaluation of NaCl tolerance in the callus cultures ofSuaeda nudiflora Moq.Biol. Plant. 46, 193–198.CrossRefGoogle Scholar
  24. Cherian S., Reddy M. P. and Pandya J.B. 1999 Studies on salt tolerance inAvicennia marina (Forsk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity.Indian J. Plant Physiol. 4, 266–270.Google Scholar
  25. Dat J. F., Vandenabeele E., Vranova M., Mantagu V., Inzé D. and Breusegem F. V. 2000 Dual action of the active oxygen species during plant stress responses.Cell. Mol. Life Sci. 57, 779–795.PubMedCrossRefGoogle Scholar
  26. Delauney A. J. and Verma D. P. S. 1993 Proline biosynthesis and osmoregulation in plants.Plant J. 4, 215–223.CrossRefGoogle Scholar
  27. Dey S. K. and Kar M. 1995 Antioxidant efficiency during callus initiation from mature rice embryo.Plant Cell Physiol. 36, 543–549.Google Scholar
  28. Eising R., Trelease R. N. and Ni W. T. 1990 Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons.Arch. Biochem. Biophys. 278, 258–264.PubMedCrossRefGoogle Scholar
  29. Eltsner E. F. and Formmeyer D. 1979 Analysis of different mechanisms of photosynthetic oxygen reduction.Biochim. Biophys. Acta 325, 162–188.Google Scholar
  30. Esaka M., Yamada N., Kitabayashi M., Setoguchi Y., Tsugeki R., Kondo M. and Nishimura M. 1997 cDNA cloning and differential gene expression of three catalases in pumpkin.Plant Mol. Biol. 33, 141–155.PubMedCrossRefGoogle Scholar
  31. Fang Z. Q., Yuan L. Y., Hong P. C., Ming L. C. and Shan W. B. 2005 NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyteSuaeda salsa L.Plant Sci. 168, 423–430.CrossRefGoogle Scholar
  32. Flowers T. J. 2004 Improving crop salt tolerance.J. Exp. Bot. 55, 307–319.PubMedCrossRefGoogle Scholar
  33. Flowers T. J., Troke P. F and Yeo A. R. 1977 The mechanism of salt tolerance in halophytes.Annu. Rev. Plant Physiol. 28, 89–121.CrossRefGoogle Scholar
  34. Flowers T. J., Hajibagheri M. A. and Clipson N. J. W. 1986 Halophytes.Quart. Rev. Biol. 61, 313–337.CrossRefGoogle Scholar
  35. Foolad M. R. 2004 Recent advances in genetics of salt tolerance in tomato.Plant Cell Tissue Organ Cult. 76, 101–119.CrossRefGoogle Scholar
  36. Foyer H. C. and Noctor G. 2000 Oxygen processing in photosynthesis: regulation and signaling.New Phytol. 146, 359–388.CrossRefGoogle Scholar
  37. Frugoli J. A., Zhong H. H., Nuccio M. L., McCourt P., McPeek M. A., Thomas T. L. and McClung C. R. 1996 Catalase is encoded by a multigene family inArabidopsis thaliana (L.) Heynh.Plant Physiol. 112, 327–336.PubMedCrossRefGoogle Scholar
  38. Frugoli J. A., McPeek M. A., Thomas T. L. and McClung C. R. 1998 Intron loss and gain during evolution of the catalase gene family in angiosperms.Genetics 149, 355–365.PubMedGoogle Scholar
  39. Fukushima Y., Sasamoto H., Baba S. and Ashihara H. 1997 Effect of salt stress on the catabolism of sugars in leaves and roots of a mangrove plantAvicennia marina.Z. Naturforsch. 52, 187–192.Google Scholar
  40. Gaymard F., Boucherez J. and Briat J. F. 1996 Characterization of a ferritin mRNA fromArabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid.Biochem. J. 318, 67–73.PubMedGoogle Scholar
  41. Genard H., Le Saos J., Hillard J., Tremolieres A. and Boucaud J. 1991 Effect of salinity on lipid composition, glycinebetaine content and photosynthetic activity in chloroplasts ofSuaeda maritima.Plant Physiol. Biochem. 29, 421–427.Google Scholar
  42. Gong Q., Li P., Ma S., Rupassara S. I. and Bohnert H. J. 2005 Salinity stress adaptation competence in the extremophileThellungiella halophila in comparison with its relativeArabidopsis thaliana.Plant J. 44, 826–839.PubMedCrossRefGoogle Scholar
  43. Gossett D. R., Millhollon E. P. and Lucas M. C. 1994 Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.Crop Sci. 34, 706–714.Google Scholar
  44. Guan L. and Scandalios J. G. 1993 Characterization of the catalase antioxidant defense geneCat1 of maize, and its developmentally regulated expression in transgenic tobacco.Plant J. 3, 527–536.PubMedCrossRefGoogle Scholar
  45. Guan L. and Scandalios J. G. 1996 Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases.J. Mol. Evol. 42, 570–579.PubMedCrossRefGoogle Scholar
  46. Gueta-Dahan Y., Yaniv Z., Zilinskas B. A. and Ben-Hayyim G. 1997 Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus.Planta 203, 460–469.PubMedCrossRefGoogle Scholar
  47. Hamilton E. W. III and Heckathorn S. A. 2001 Mitochondrial adaptations to NaCl: complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine.Plant Physiol. 126, 1266–1274.PubMedCrossRefGoogle Scholar
  48. Hanson A. D. and Burnet M. 1994 Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. InBiochemical and cellular mechanisms of stress tolerance in plants (ed. J. H. Cherry), pp. 291–301. Springer, Berlin.Google Scholar
  49. Hasegawa M., Bressan R. and Pardo J. M. 2000a The dawn of plant salt tolerant genetics.Trends Plant Sci. 5, 317–319.PubMedCrossRefGoogle Scholar
  50. Hasegawa M., Bressan R., Zhu J. K. and Bohnert H. J. 2000b Plant cellular and molecular responses to high salinity.Annu. Rev. Plant. Physiol. 51, 463–499.CrossRefGoogle Scholar
  51. Havir E. A. and McHale N. A. 1987 Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves.Plant Physiol. 84, 450–455.PubMedGoogle Scholar
  52. Hellebust J. A. 1976 Osmoregulation.Annu. Rev. Plant Physiol. 27, 485–505.CrossRefGoogle Scholar
  53. Hernandez J. A., Corpas F. J., Gomez M., del Rio L. A. and Sevilla F. 1993 Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria.Physiol. Plant. 89, 103–110.CrossRefGoogle Scholar
  54. Hernandez J. A., del Rio L. A. and Sevilla F. 1994 Salt stressinduced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts fromVigna unguiculata (L.) Walp.New Phytol. 126, 37–44.CrossRefGoogle Scholar
  55. Hernandez J. A., Olmos E., Corpas F. J., Sevilla F. and del Río L. A. 1995 Salt-induced oxidative stress in chloroplasts of pea plants.Plant Sci. 105, 151–167.CrossRefGoogle Scholar
  56. Hernández J. A., Campillo A., Jimenez A., Alarcon J. J. and Sevilla F. 1999 Response of antioxidant systems and leaf water relations to NaCl stress in pea plants.New Phytol. 141, 241–251.CrossRefGoogle Scholar
  57. Hernández J. A., Jiménez A., Mullineaux P. and Sevilla F. 2000 Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences.Plant Cell Environ. 23, 853–862.CrossRefGoogle Scholar
  58. Hetherington A. M. and Woodward F. I. 2003 The role of stomata in sensing and driving environmental change.Nature 424, 901–908.PubMedCrossRefGoogle Scholar
  59. Hibino T., Meng Y. L., Kawamitsu Y., Uehara N., Matsuda N., Tanaka Y. et al. 2001 Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangroveAvicennia marina (Forsk.) Vierh.Plant Mol. Biol. 45, 353–363.PubMedCrossRefGoogle Scholar
  60. Hogarth P. J. 1999The biology of mangroves, 1st edition. Oxford University Press, Oxford.Google Scholar
  61. Holmberg N. and Bulow L. 1998 Improving stress tolerance in plants by gene transfer.Trends Plant Sci. 3, 61–66.CrossRefGoogle Scholar
  62. Hong Z., Lakkineni K., Zhang Z. and Verma D. P. S. 2000 Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress.Plant Physiol. 122, 1129–1136.PubMedCrossRefGoogle Scholar
  63. Huang Y H. and Chen S.C. 1995 Anatomical responses inKandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl.Bot. Bull. Acad. Sin. 36, 181–188.Google Scholar
  64. Hurst A. C., Grams T. E. E. and Ratajczak R. 2004 Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plantMesembryanthemum crystallinum L.Plant Cell Environ. 27, 187–197.CrossRefGoogle Scholar
  65. Jiang M. and Zhang J. 2002 Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.J. Exp. Bot. 53, 2401–2410.PubMedCrossRefGoogle Scholar
  66. Jiang T. B. 2005 Isolation and expression pattern analysis of two ferritin genes in tobacco.J. Integr. Plant Biol. 47, 477–486.CrossRefGoogle Scholar
  67. Jithesh M. N. 2004 Isolation and characterization of two cDNA isoforms for catalase gene fromAvicennia marina (Forsk.) Vierh and its expression in transgenic system. Ph.D. thesis, University of Madras, Chennai, India.Google Scholar
  68. Jithesh M. N., Prashanth S. R., Sivaprakash K. R. and Parida A. K. 2006 Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove,Avicennia marina (Forsk.) Vierh. by mRNA analysis.Plant Cell Rep. 25, 865–876.PubMedCrossRefGoogle Scholar
  69. Kant S., Kant P., Raveh E. and Barak S. 2006 Evidence that differential gene expression between the halophyteThellungiella halophila andArabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+uptake inT. halophila. Plant Cell Environ. DOI:10.1111/j.1365-3040. 2006.01502.×.Google Scholar
  70. Kawano T. 2003 Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction.Plant Cell Rep. 21, 829–837.PubMedGoogle Scholar
  71. Kennedy C. H., Maples K. R. and Mason R. P. 1990 In vivo detection of free radical metabolites.Pure Appl. Chem. 62, 295–299.CrossRefGoogle Scholar
  72. Kishor P. B. K., Hong Z., Miao G. H., Hu C. A. A. and Verma D. P. S. 1995 Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiol. 108, 1387–1394.PubMedGoogle Scholar
  73. Kliebenstein D. J., Monde R. A. and Last R. L. 1998 Superoxide dismutase inArabidopsis: an eclectic enzyme family with disparate regulation and protein localization.Plant Physiol. 118, 637–650.PubMedCrossRefGoogle Scholar
  74. Klotz M. G., Klassen G. R. and Loewen P. C. 1997 Phylogenetic relationships among prokaryotic and eukaryotic catalases.Mol. Biol. Evol. 14, 951–958.PubMedGoogle Scholar
  75. Kore-eda S., Cushman M. A., Akselrod I., Bufford D., Fredrickson M., Clark E. and Cushman J. C. 2004 Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis inMesembryanthemum crystallinum.Gene 341, 83–92.PubMedCrossRefGoogle Scholar
  76. Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L.et al. 2003 NADPH oxidaseAtrbohD andAtrbohF genes function in ROS-dependent ABA signaling inArabidopsis.EMBO J. 22, 2623–2633.PubMedCrossRefGoogle Scholar
  77. Lee D. H., Kim Y. S. and Lee C. B. 2001 The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.).J. Plant Physiol. 158, 737–745.CrossRefGoogle Scholar
  78. Lobreaux S., Massenet O. and Briat J. F. 1992 Iron induces ferritin synthesis in maize plantlets.Plant Mol. Biol. 19, 563–575.PubMedCrossRefGoogle Scholar
  79. Lobreaux S., Thoiron S. and Briat J. F. 1995 Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress.Plant J. 8, 443–449.CrossRefGoogle Scholar
  80. Masuda T., Mikami B., Goto F., Yoshihara T. and Utsumi S. 2003 Crystallization and preliminary X-ray crystallographic analysis of plant ferritin fromGlycine max.Biochim. Biophys. Acta 1645, 113–115.PubMedGoogle Scholar
  81. Matysik J., Alia P. S. P., Bhalu B. and Mohanty P. 2002 Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants.Curr. Sci. 82, 525–532.Google Scholar
  82. May M. J., Vernoux T., Leaver C., Van Montagu M. and Inze D. 1998 Glutathione homeostasis in plants: implications for environmental sensing and plant development.J. Exp. Bot. 49, 649–667.CrossRefGoogle Scholar
  83. Meher-Homji V M. 1988 The Pichavaram mangroves.Blackbuck 4, 1–12.Google Scholar
  84. Mehta P. A., Sivaprakash K., Parani M., Venkataraman G. and Parida A. K. 2005 Generation and analysis of expressed sequence tags from the salt-tolerant mangrove speciesAvicennia marina (Forsk) Vierh.Theor. Appl. Genet. 110, 416–24.PubMedCrossRefGoogle Scholar
  85. Mittler R. 2002 Oxidative stress, antioxidants and stress tolerance.Trends Plant Sci. 7, 405–410.PubMedCrossRefGoogle Scholar
  86. Mittler R., van der Auwerra S., Gollery M. and Breusegem F. V. 2004 Reactive oxygen gene network of plants.Trends Plant Sci. 10, 490–498.CrossRefGoogle Scholar
  87. Mittova V., Tal M., Volokita M. and Guy M. 2003 Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato speciesLycopersicon pennelli.Plant Cell Environ. 26, 845–856.PubMedCrossRefGoogle Scholar
  88. Morel Y. and Barouki Y. 1999 Repression of gene expression by oxidative stress.Biochem. J. 342, 481–496.PubMedCrossRefGoogle Scholar
  89. Murata N., Mohanty P. S., Hayashi H. and Papageorgiou G. C. 1992 Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex.FEBS Lett. 296, 187–189.PubMedCrossRefGoogle Scholar
  90. Niebel A., Heungens K., Barthels N., Inzé D., Van Montagu M. and Gheysen G. 1995 Characterization of a pathogen induced potato catalase and its systemic expression upon nematode and bacterial infection.Mol. Plant Microbe Interact. 8, 371–378.PubMedGoogle Scholar
  91. Ohlrogge J. and Benning C. 2000 Unraveling plant metabolism by EST analysis.Curr. Opin. Plant Biol. 3, 224–228.PubMedGoogle Scholar
  92. Ota Y., Ario T., Hayashi K., Nakagawa T., Hattori T., Maeshima M. and Asahi T. 1992 Tissue-specific isoforms of catalase subunits in castor bean seedlings.Plant Cell Physiol. 33, 225–232.Google Scholar
  93. Paramonova N. V., Shevyakova N. I. and Kuznetsov V. V. 2004 Ul-trastructure of chloroplasts and their storage inclusions in the primary leaves ofMesembryanthemum crystallinum affected by putrescine and NaCl.Russ. J. Plant Physiol. 1, 86–96.CrossRefGoogle Scholar
  94. Parida A. K., Das A. B. and Mohanty P. 2004 Defense potentials to NaCl in a mangrove,Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes.J. Plant Physiol. 161, 531–542.PubMedCrossRefGoogle Scholar
  95. Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J.et al. 2000 Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.Nature 406, 731–734.PubMedCrossRefGoogle Scholar
  96. Petit J. M., Briat J. F. and Lobreaux S. 2001 Structure and differential expression of the four members of theArabidopsis thaliana ferritin gene family.Biochem. J. 359, 575–582.PubMedCrossRefGoogle Scholar
  97. Rabbani M. A., Maruyama K., Abe H., Ayub Khan M., Katsura K., Ito Y.et al. 2003 Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.Plant Physiol. 133, 1755–1767.PubMedCrossRefGoogle Scholar
  98. Ragland M., Briat J. F., Gagnon J., Laulhere J. P., Massenet O. and Theil E. C. 1990 Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean.J. Biol. Chem. 265, 18339–18344.PubMedGoogle Scholar
  99. Reilly K., Han Y., Tohme J. and Beeching J. R. 2001 Isolation and characterization of a cassava catalase expressed during post-harvest physiological deterioration.Biochim. Biophys. Acta 1518, 317–323.PubMedGoogle Scholar
  100. Rengasamy P. 2006 World salinization with emphasis on Australia.J. Exp. Bot. 57, 1017–1023.PubMedCrossRefGoogle Scholar
  101. Rout N. P. and Shaw B. P. 2001 Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes.Plant Sci. 160, 415–423.PubMedCrossRefGoogle Scholar
  102. Sairam R. K. and Tyagi A. 2004 Physiology and molecular biology of salinity stress tolerance in plants.Curr. Sci. 86, 407–421.Google Scholar
  103. Salin M. L. 1987 Toxic oxygen species and protective systems of the chloroplast.Physiol. Plant. 72, 681–689.CrossRefGoogle Scholar
  104. Savouré D. A., Davey M. T. T., Hua J. X., Mauro M. S., Van Montagu M., Inzé D. and Verbruggen N. 1999 NaCl and CuSO4 treatments trigger distinct oxidative defence mechanisms inNicotiana plumbaginifolia L.Plant Cell Environ. 22, 387–396.CrossRefGoogle Scholar
  105. Scandalios J., Tong W. J. and Roupaklas D. G. 1980Cat3, a third gene locus coding for a tissue-specific catalase in maize: genetics, intercellular location, and some biochemical properties.Mol. Gen. Genet. 179, 33–41.CrossRefGoogle Scholar
  106. Selvam V. 2003 Environmental classification of mangrove wetlands of India.Curr. Sci. 84, 757–765.Google Scholar
  107. Senthilkumar P., Jithesh M. N., Parani M., Rajalakshmi S., Praseetha K. and Parida A. K. 2005 Salt stress effects on the accumulation of vacuolar H+-ATPase subunit c transcripts in wild rice,Porteresia coarctata (Roxb.) Tateoka.Curr. Sci. 89, 1386–1394.Google Scholar
  108. Serrano R., Mulet J., Rios G., Marquez J., de Larrinoa I., Leube M. et al. 1999 A glimpse of the mechanisms of ion homeostasis during salt stress.J. Exp. Bot. 50, 1023–1036.CrossRefGoogle Scholar
  109. Shalata A. and Tal M. 1998 The effects of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relativeLycopersicon pennellii.Physiol. Plant. 104, 169–174.CrossRefGoogle Scholar
  110. Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y. and Yoshimura K. 2002 Regulation and function of ascorbate peroxidase isoenzymes.J. Exp. Bot. 53, 1305–1319.PubMedCrossRefGoogle Scholar
  111. Singha S. and Choudhuri M. A. 1990 Effect of salinity (NaCl) stress on H2O2 metabolism inVigna andOryza seedlings.Biochem. Physiol. Pflanz. 186, 69–74.Google Scholar
  112. Slesak I., Miszalski Z., Karpinska B., Niewiadomska E., Ratajczak R. and Karpinski S. 2002 Redox control of oxidative stress responses in the C3-CAM intermediate plantMesembryanthemum crystallinum.Plant Physiol. Biochem. 40, 669–677.CrossRefGoogle Scholar
  113. Smirnoff N. 1993 The role of active oxygen in the response of plants to water deficit and dessication.New Phytol. 125, 27–58.CrossRefGoogle Scholar
  114. Streb P., Knauf A. M. and Feierabend J. 1993 Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.Physiol. Plant. 88, 590–598.CrossRefGoogle Scholar
  115. Strozycki P. M., Skapska A., Szczesniak K., Sobieszczuk E., Briat J. F. and Legocki A. B. 2003 Differential expression and evolutionary analysis of the three ferritin genes in the legume plantLupinus luteus.Physiol. Plant. 118, 380–389.CrossRefGoogle Scholar
  116. Suzuki M., Yasumoto E., Baba S. and Ashihara H. 2003 Effect of salt stress on the metabolism of ethanolamine and choline in leaves of the betaine-producing mangrove speciesAvicennia marina.Photochemistry 64, 941–948.CrossRefGoogle Scholar
  117. Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K.et al. 2004 Comparative genomics in salt tolerance betweenArabidopsis andArabidopsis-related halophyte salt cress usingArabidopsis microarray.Plant Physiol. 135, 1–13.CrossRefGoogle Scholar
  118. Takemura T., Hanagata N., Sugihara K., Baba S., Karube I. and Dubinsky Z. 2000 Physiological and biochemical responses to salt stress in the mangrove,Bruguiera gymnorrhiza.Aquat. Bot. 68, 15–28.CrossRefGoogle Scholar
  119. Takemura T., Hanagata N., Dubinsky Z. and Karube I. 2002 Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase fromBruguiera gymnorrhiza.Trees 16, 94–99.CrossRefGoogle Scholar
  120. Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takabe T.et al. 1999 Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD inchloroplasts.Plant Sci. 148, 131–138.CrossRefGoogle Scholar
  121. Tausz M., Sircelj H. and Grill D. 2004 The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?J. Exp. Bot. 55, 1955–1962.PubMedCrossRefGoogle Scholar
  122. Tester M. and Davenport R. 2003 Na+ tolerance and Na+ transport in higher plants.Ann. Bot. 91, 503–527.PubMedCrossRefGoogle Scholar
  123. Tomlinson P. B. 1986The botany of mangroves, 1st edition. Cambridge University Press, Cambridge.Google Scholar
  124. Van Breusegem F., Vranova E., Dat J. F. and Inzé D. 2001 The role of active oxygen species in plant signal transduction.Plant Sci. 161, 405–14.CrossRefGoogle Scholar
  125. Van Camp W., Capiau K., Van Montagu M., Inzé D. and Slooten L. 1996 Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.Plant Physiol. 112, 1703–1714.PubMedCrossRefGoogle Scholar
  126. Vernon D. M. and Bohnert H. J. 1992 A novel methyl transferase induced by osmotic stress in the facultative halophyteMesembryanthemum crystallinum.EMBO J. 11, 2077–2085.PubMedGoogle Scholar
  127. Waisel Y., Yeshel A. and Agami M. 1986 Salt balance of leaves of the mangrove,Avicennia marina.Physiol. Plant. 67, 67–72.CrossRefGoogle Scholar
  128. Wang B., Luttge U. and Ratajczak R. 2004a Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyteSuaeda salsa L.J. Plant Physiol. 161, 285–293.PubMedCrossRefGoogle Scholar
  129. Wang Z. L., Li H. P., Fredricksen M., Gong Z. Z., Kim C. S., Zhang C. Q.et al. 2004b Expressed sequence tags fromThellungiella halophila, a new model to study plant salt tolerance.Plant Sci. 166, 609–616.CrossRefGoogle Scholar
  130. Wang B., Davenport R. J., Volkov V. and Amtmann A. 2006 Low unidirectional sodium influx into root cells restricts net sodium accumulation inThellungiella halophila, a salt-tolerant relative ofArabidopsis thaliana.J. Exp. Bot. 57, 1161–1170.PubMedCrossRefGoogle Scholar
  131. Wardrop A. J., Wicks R. E. and Entsch B. 1999 Occurrence and expression of members of the ferritin gene family in cowpeas.Biochem. J. 337, 523–530.PubMedCrossRefGoogle Scholar
  132. Willekens H., Villarroel R., Van Montagu M., Inzé D. and Van Camp W. 1994a Molecular identification of catalases fromNicotiana plumbaginifolia (L.).FEBS Lett. 352, 79–83.PubMedCrossRefGoogle Scholar
  133. Willekens H., Langebartels C., Tiré C., Van Montagu M., Inze D and Van Camp W 1994b Differential expression of catalase genes inNicotiana plumbaginifolia (L.).Proc. Natl. Acad. Sci. USA 91, 10450–10454.PubMedCrossRefGoogle Scholar
  134. Willekens H., Van Camp W., Van Montagu M., Inzé D., Sandermann H. Jr and Langebartels C. 1994c Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes inNicotiana plumbaginifolia (L.).Plant Physiol. 106, 1007–1014.PubMedGoogle Scholar
  135. Willekens H., Inzé D., Van Montagu M. and Van Camp W. 1995 Catalase in plants.Mol. Breed. 1, 207–228.CrossRefGoogle Scholar
  136. Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C. and Van Montagu M. 1997 Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.EMBO J. 16, 4806–4816.PubMedCrossRefGoogle Scholar
  137. Wong C. E., Li Y., Whitty B. R., Díaz-Camino C., Akhter S. R., Brandle J. E.et al. 2005 Expressed sequence tags from the Yukon ecotype ofThellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap.Plant Mol. Biol. 58, 561–574.PubMedCrossRefGoogle Scholar
  138. Wydrzynski T., Angstrom J. and Vangaurd T. 1989 H2O2 formation by photosystem II.Biochim. Biophys. Acta 1973, 23–28.Google Scholar
  139. Xiong L. and Zhu J. K. 2002 Molecular and genetic aspects of plant responses to osmotic stress.Plant Cell Environ. 25, 131–139.PubMedCrossRefGoogle Scholar
  140. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D. and Somero G. N. 1982 Living with water stress: evolution of osmolyte systems.Science 24, 1214–1222.CrossRefGoogle Scholar
  141. Zancani M., Peresson C., Biroccio A., Federici G., Urbani A., Murgia I.et al. 2004 Evidence for the presence of ferritin in plant mitochondria.Eur. J. Biochem. 271, 3657–3664.PubMedCrossRefGoogle Scholar
  142. Zhang L., Ma X. L., Zhang Q., Ma C. L., Wang P. P., Sun Y. F.et al. 2001 Expressed sequence tags from a NaCl-treatedSuaeda salsa cDNA library.Gene 267, 193–200.PubMedCrossRefGoogle Scholar
  143. Zhang Y., Marcillat O., Giulivi C., Ernster L. and Davies K. J. A. 1990 The oxidative inactivation of mitochondrial electron transport chain components and ATPase.J. Biol. Chem. 265, 16330–16336.PubMedGoogle Scholar
  144. Zhu J. K., Hasegawa P. M. and Bressan R. A. 1997 Molecular aspects of osmotic stress.CRC Crit. Rev. Plant Sci. 16, 253–277.CrossRefGoogle Scholar
  145. Zhu J. K., Liu J. and Xiong L. 1998 Genetic analysis of salt tolerance inArabidopsis. Evidence for a critical role of potassium nutrition.Plant Cell 10, 1181–1191.PubMedCrossRefGoogle Scholar
  146. Zimmermann P., Heinlein C., Orendi G. and Zentgraf U. 2006 Senescence-specific regulation of catalases inArabidopsis thaliana (L.) Heynh.Plant Cell Environ. 29, 1049–1060.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • M. N. Jithesh
    • 1
  • S. R. Prashanth
    • 1
  • K. R. Sivaprakash
    • 1
  • Ajay K. Parida
    • 1
    Email author
  1. 1.M. S. Swaminathan Research FoundationTaramani, ChennaiIndia

Personalised recommendations