Biotechnology and Bioprocess Engineering

, Volume 9, Issue 6, pp 506–513 | Cite as

Metabolic flux distribution for γ-linolenic acid synthetic pathways inSpirulina platensis

  • Asawin Meechai
  • Siriluk Pongakarakun
  • Patcharaporn Deshnium
  • Supapon Cheevadhanarak
  • Sakarindr Bhumiratana
Article

Abstract

Spirulina produces γ-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of twoSpirulina strains, wild type BP and a high-GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis ofS. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass synthesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes—the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate—were measured and the remaining fluxes were calculated using linear optimization. The calculation showed that the flux through the reaction converting acetyl-CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild-type strain. This finding implies that this reaction is rate controlling. This suggestion was supported by experiments, in which the stimulating factors for this reaction (NADPH and MgCl2) were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Keywords

metabolic flux analysis Spirulina platensis γ-linolenic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ciferri, O., (1983)Spirulina, the edible microorganism.Microbiol. Rev. 47: 551–578.Google Scholar
  2. [2]
    Matsuno, T., S. Nagata, M. Iwahashi, T. Koike, and M. Okada (1979) Intensification of color of fancy red carp with zeaxanthin and myxoxanthophyll, major carotenoid constituents ofSpirulina.Bull. Jpn. Soc. Sci. Fisheries 45: 627–633.CrossRefGoogle Scholar
  3. [3]
    Vonshak, A. (1997) Use ofSpirulina biomass,Spirulina platensis (Arthrospira) physiology cell biology and biotechnology. Taylor & Francis Ltd., UK.Google Scholar
  4. [4]
    Cohen, Z. (1986)Product from Microalgae. CRC Press Inc., Florida, USA.Google Scholar
  5. [5]
    Nichols, B. W. and B. J. B. Wood (1968) The occurrence and biosynthesis of gamma-linolenic acid in blue-green alga,Spirulina platensis.Lipids 3: 46–50.CrossRefGoogle Scholar
  6. [6]
    Wright, S. and J. H. Burton (1982) A controlled trial of the treatment of atopic eczema in adults with evening primrose oil (Efamol).Lancet: 1120–1122.Google Scholar
  7. [7]
    Horrobin, D. F. (1983) The role of essential fatty acids and prostaglandins in the premenstrual syndrome.J. Reprod. Med. 28: 465–468.Google Scholar
  8. [8]
    Huang, Y. S., M. S. Manku, and D. F. Horrobin (1984) The effect of dietary cholesterol on blood and liver polyunsaturated fatty acids and on plasma cholesterol in rats fed various types of fatty acid diet.Lipids 19: 664–672.CrossRefGoogle Scholar
  9. [9]
    Shimizu, S., Y. Shinmen, H. Kawahima, K. Akimoto, and H. Yamada (1988) Fungal mycelia as a novel source of eicosapentaenoic acid.Biochem. Biophys. Res. Comm. 150: 335.CrossRefGoogle Scholar
  10. [10]
    Wolf, R. B., R. Kleiman, and R. E. England (1983) New sources of γ-linolenic acid (Boraginaceae, Scrophulariaceae, Onagraceae, Saxifragaceae).J. Am. Oil. Chem. Soc. 60: 1858.CrossRefGoogle Scholar
  11. [11]
    Mahajan, G. and M. Kamat (1995) γ-Linolenic acid production fromSpirulina platensis.Appl. Microbiol. Biotechnol. 45: 466–469.CrossRefGoogle Scholar
  12. [12]
    Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen (1994) Optimization of γ-linolenic acid (GLA) production inSpirulina platensis.J. Appl. Phycol. 6: 295–300.CrossRefGoogle Scholar
  13. [13]
    Cohen, Z., A. Vonshak, and A. Richmond (1987) Fatty acid composition ofSpirulina strains grown under various environmental conditions.Phytochemistry 26: 2255–2258.CrossRefGoogle Scholar
  14. [14]
    Suphatrakul, A. (1996)Effect of Temperature on the Expression of the 12-Desaturase Gene (desA)in Spirulina platensisC1. M.S. Thesis, King Mongkut’s University of Technology, Thonburi, Bangkok, Thailand.Google Scholar
  15. [15]
    Deshnium, P., K. Paithoonrangsarid, A. Suphatrakul, D. Meesapyodsuk, M. Tanticharoen, and S. Cheevadhanarak (2000) Temperature-independent and-dependent expression of desaturase genes in filamentous cyanobacteriumSpirulina platensis strain C1 (Arthrospira sp. PCC 9438).FEMS Lett. 184: 207–213.CrossRefGoogle Scholar
  16. [16]
    Cohen, Z., M. Reungjitchachawali, W. Siangdung, M. Tanticharoen, and Y. M. Heimer (1993) Herbicide resistant lines of microalgae: Growth and fatty acid composition.Phytochemistry 34: 973–978.CrossRefGoogle Scholar
  17. [17]
    Berry, A. (1996) Improving production of aromatic compounds inEscherichia coli by metabolic engineering.Trends Biotechnol. 14: 250–256.CrossRefGoogle Scholar
  18. [18]
    Gourdon, P. and N. D. Lindley (1999) Metabolic analysis of glutamate production byCorynebacterium glutamicum.Met. Eng. 1: 224–231.CrossRefGoogle Scholar
  19. [19]
    Hua, Q., P.-C. Fu, C. Yang, and K. Shimizu (1998) Microaerobic lysine fermentations and metabolic flux analysis.Biochem. Eng. J. 2: 89–100.CrossRefGoogle Scholar
  20. [20]
    Ingram, L. O., P. F. Gomez, X. Lai, M. Moniruzzaman, B. E. Wood, L. P. Yomano, and S. W. York (1998) Metabolic engineering of bacteria for ethanol production.Biotechnol. Bioeng. 58: 204–214.CrossRefGoogle Scholar
  21. [21]
    Vallino, J. J. and G. Stephanopoulos (1993) Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction.Biotechnol. Bioeng. 41: 633–646.CrossRefGoogle Scholar
  22. [22]
    Vonshak, A. (1986)Laboratory Techniques for the Cultivation of Microalgae: CRC Handbook of Microalgal Mass Cultures. CRC Press, Florida, USA.Google Scholar
  23. [23]
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugar and related substances.Analy. Chem. 28: 350–356.CrossRefGoogle Scholar
  24. [24]
    Allen, I. F. and N. G. Homes (1986)Electron Transport and Redox Titration: Photosynthesis Energy Transfuction. a Practical Approach. Information Printing Ltd., Oxford, UK.Google Scholar
  25. [25]
    Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asumizu, Y. Nakamura, N. Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II Sequence determination of the entire genome and assigment of potential protein-coding regions.DNA Res. 3: 109–136.CrossRefGoogle Scholar
  26. [26]
    Kaneko, T., S. Sato, H. Kotani, A. Tanak, E. Asumizu, Y. Nakamura, Miyajima, and M. Hirosawa (1996) Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assigment of potential protein-coding regions (supplement).DNA Res. 3: 185–209.CrossRefGoogle Scholar
  27. [27]
    Hua, Q. and K. Shimizu (1999) Effect of dissoved ozygen concentration on the intracellular flux distribution for pyruvate fermentation.J. Biotechnol. 68: 135–147.CrossRefGoogle Scholar
  28. [28]
    Daae, B. E. and A. P. Ison (1999) Classification and sensitivity analysis of a proposed primary metabolic reaction network forStreptomyces lividans.Met. Eng. 1: 153–165.CrossRefGoogle Scholar
  29. [29]
    Stephanopoulos, G., A. A. Aristidou, and J. Nielsen (1998)Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, USA.Google Scholar
  30. [30]
    Yang, C., Q. Hua, and K. Shimizu (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions.Biochem. Eng. J. 6: 87–102.CrossRefGoogle Scholar
  31. [31]
    Laing, W. A. (1992) The regulation of acetyl-CoA carboxylase.Res. Photosyn. 3: 39–42.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  • Asawin Meechai
    • 1
  • Siriluk Pongakarakun
    • 1
  • Patcharaporn Deshnium
    • 2
  • Supapon Cheevadhanarak
    • 3
  • Sakarindr Bhumiratana
    • 1
    • 2
  1. 1.Department of Chemical Engineering, School of EngineeringKing Mongkut’s University of TechnologyBangkokThailand
  2. 2.National Center for Genetic Engineering and Biotechnology (BIOTEC)PathumthaniThailand
  3. 3.Division of Biotechnology, School of Bioresources and TechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations