Applied Biochemistry and Biotechnology

, Volume 51, Issue 1, pp 479–493 | Cite as

Process engineering of high-ethanol-tolerance yeast for the manufacture of ethanol

  • M. S. Krishnan
  • Y. Xia
  • G. T. Tsao
  • N. Kasthurikrishnan
  • N. Srinivasan
  • R. G. Cooks
Session 3 Bioprocessing Research

Abstract

Inhibitory effects of ethanol and glucose on a high-ethanol-tolerance yeast strain (fusion product ofSaccharomyces diastaticus andSaccharomyces uvarum) having high osmotic and ethanol tolerance were studied in batch cultures. A model incorporating both substrate and product inhibition was developed that represented the experimental data quite well. By performing fed-batch fermentation, an ethanol concentration of 13.3% (w/v) was obtained. The maximum allowable ethanol concentration for cell growth was predicted to be 129.9 g/L and ethanol-producing capability of cells was found to be completely inhibited at 136.4 g/L. On-line monitoring of the fermentation was performed using an ion trap mass spectrometer and a triple quadrupole mass spectrometer. Preliminary results are reported.

Index Entries

Ethanol substrate inhibition product inhibition batch fermentation membrane introduction mass spectrometry flow injection analysis 

Nomenclature

Ks

Monod constant for growth (g/L)

K′s

Monod constant, for product formation (g/L)

Ki

Inhibition constant, for growth (g/L)

K′i

Inhibition constant, for production (g/L)

P

ethanol concentration (g/L)

Pm

ethanol concentration above which cells do not grow (g/L)

P′m

ethanol concentration above which cells do not produce ethanol (g/L)

S

substrate concentration (g/L)

YX/S

cell yield constant (dimensionless)

YP/S

product yield constant (dimensionless)

Greek Letters

α

constant defined in Eq. (3) (dimensionless)

α′

constant defined in Eq. (4) (dimensionless)

μ

specific growth rate in the presence of ethanol (l/h)

μm

specific growth at zero ethanol concentration (l/h)

v

specific rate of product formation at ethanol concentration P (l/h)

vm

specific rate of product formation at zero ethanol concentration (l/h)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyman, C. E. (1991),Ethanol Annual Report FY 1990, Texeira, R. H. and Goodman, B. J., eds., Solar Energy Research Institute, CO.Google Scholar
  2. 2.
    D'Amore, T., Panchal, C. J., Russell, I., and Stewart, G. G. (1990)Crit. Rev. Biotechnol. 9(4), 287–305.CrossRefGoogle Scholar
  3. 3.
    Lee, S. S., Robinson, F. M., and Wang, H. Y. (1981)Biotechnol. Bioeng. Symp. 11, 641–649.Google Scholar
  4. 4.
    Hoch, G. and Kok, B. (1963),Arch. Biochem Biophys. 101, 160.CrossRefGoogle Scholar
  5. 5.
    Dejarme, L. E., Bauer, S. J., Cooks, R. G., Lauritsen, F. R., Kotiaho, T., and Graf, T. (1993),Rapid Commun. Mass Spectro,7, 935–942.CrossRefGoogle Scholar
  6. 6.
    Srinivasan, N. (1994), MS Thesis, Purdue University.Google Scholar
  7. 7.
    Hayward, M. J., Kotiaho, T., Lister, A. K., Cooks, R. G., Austin, G. D., Narayan, R., and Tsao, G. T. (1990),Anal. Chem. 62, 1798.CrossRefGoogle Scholar
  8. 8.
    Casey, G. P. and Ingledew, W. P. (1986),Crit. Rev. Microbiol. 13(3), 219–280.CrossRefGoogle Scholar
  9. 9.
    Aiba, S., Shoda, M., and Nagatini, M. (1968),Biotechnol. Bioeng. 10, 845–864.CrossRefGoogle Scholar
  10. 10.
    Ghose, T. K. and Tyagi, R. D. (1979),Biotechnol. Bioeng. 21, 1401–1420.CrossRefGoogle Scholar
  11. 11.
    Hill, G. A. and Robinson, C. W. (1990),Chem. Eng. J. 44 B69-B80.CrossRefGoogle Scholar
  12. 12.
    Aiba, S. and Shoda, M. (1969),J. Ferment. Technol. 47, 790.Google Scholar
  13. 13.
    Bazua, C. D. and Wilke, C. R. (1977),Biotechnol. Bioeng. Symp. 7, 105–118.Google Scholar
  14. 14.
    Luong, J. H. T. (1985),Biotechnol. Bioeng. 27, 280–285.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • M. S. Krishnan
    • 1
  • Y. Xia
    • 1
  • G. T. Tsao
    • 1
  • N. Kasthurikrishnan
    • 2
  • N. Srinivasan
    • 2
  • R. G. Cooks
    • 2
  1. 1.Laboratory of Renewable Resources Engineering and School of Chemical EngineeringPurdue UniversityWest Lafayette
  2. 2.Department of ChemistryPurdue UniversityWest Lafayette

Personalised recommendations