Optimization of a chemically defined, minimal medium forClostridium thermosaccharolyticum

  • Sunitha Baskaran
  • David A. L. Hogsett
  • Lee R. Lynd
Session 3 Bioprocessing Research


This article presents results from a systematic study aimed at for mulating a defined, minimal medium for the growth ofClostridium thermosaccharolyticum in batch and in continuous culture. At least one vitamin appears to be essential, and there is no demonstrable requirement for trace minerals. The defined medium is shown to support growth on high substrate concentrations with scaled nutrient levels and is expected to permit complete utilization when nutrient limitation(s) are overcome. The observed elemental requirements are compared with cell mass fraction measurements and with a typical cell composition. The maximum growth rate (μmax) for batch growth ofC thermosaccharolyticum on the minimal medium is 0.27h−1 as compared with values of ∼0.4 h−1 typically reported for growth on complex media. However, exponential growth terminates at an optical density of about 0.22 corresponding to about 40% of the final value attained. Greater understanding of nutrient requirements and interactions is needed to address this issue.

Index Entries

Ethanol defined medium minimal medium optimization Clostridium thermosaccharolyticum 


  1. 1.
    Wang, D. I. C., Avgerinos, G. C., Biocic, I., and Wang, S-D. (1983)Phil. Trans. Royal Soc. B300, 323–333.CrossRefGoogle Scholar
  2. 2.
    Slapack, G. E., Russell, I., and Stewart, G. G. (1987) inThermophilic Microbes in Ethanol Production, CRC, Boca Raton, FL, p. 74.Google Scholar
  3. 3.
    Carriera, L. H. and Ljundahl, L. G. (1984) inProduction of Ethanol from Biomass Using Anaerobic Thermophilic Bacteria in Liquid Fuel Developments, Wise, D. L., ed. CRC, Boca Raton, FL, pp. 1–30.Google Scholar
  4. 4.
    Lynd, L. R., Ahn, H.-J., Anderson, G., Hill, P., Kersey, D. S., and Klapatch, T. (1991)Appl. Biochem. Biotechnol. 28/29, 549–570.CrossRefGoogle Scholar
  5. 5.
    Sato, K., Tomita, M., Yonemura, S., Goto, S., Sekine, K., Okuma, E., Takagi, Y., Hon-nami, K., and Saiki, T. (1993),Biosci. Biotechnol. Biochem. 57(12), 2116–2121.Google Scholar
  6. 6.
    Venkateswaran, S. and Demain, A. L. (1986),Chem. Eng. Commun. 45, 53–60.CrossRefGoogle Scholar
  7. 7.
    BAskaran, S., Ahn, H.-J., and Lynd, L. R. (1994),Biotechnol. Prog. in press.Google Scholar
  8. 8.
    Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993)Biotechnol. Bioeng. 42, 873–883.CrossRefGoogle Scholar
  9. 9.
    Garcia-Martinez, D. V., Shinmyo, A., Madia, A., and Demain, A. L. (1980),Eur. J. Appl. Microbiol. Biotechnol. 9, 189–197.CrossRefGoogle Scholar
  10. 10.
    Johnson, E. A., Madia, A., and Demain, A. L. (1981)Appl. Environ. Microbiol. 41(4), 1060–2062.Google Scholar
  11. 11.
    Klapatch, T. R., Hogsett, D. A. L., Baskaran, S., and Pal, S. (1994),Appl. Biochem. Biotechnol. 45/46, 209–223.CrossRefGoogle Scholar
  12. 12.
    Bailey, J. E. and Ollis, D. F. (1986),Biochemical Engineering Fundamentals, 2nd ed. McGraw Hill, p. 28.Google Scholar
  13. 13.
    Pirt, J. S. (1975), inPrinciples of Microbe and Cell Cultivation. John Wiley, New York: p. 124.Google Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Sunitha Baskaran
    • 1
  • David A. L. Hogsett
    • 1
  • Lee R. Lynd
    • 1
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover

Personalised recommendations