Skip to main content
Log in

Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, D. and T. N. Veziroğlu (2001) Hydrogen production by biological processes: a survey of literature.Int. J. Hydrogen Energy 26: 13–28.

    Article  CAS  Google Scholar 

  2. Taguchi, F., J. D. Chang, S. Takiguchi, and M. Morimoto (1992) Efficient hydrogen production from starch by a bacterium isolated from termites.J. Ferment. Bioeng. 73: 244–245.

    Article  CAS  Google Scholar 

  3. Kumazawa, S. and A. Mitsui (1981) Characterization and optimization of hydrogen photoproduction by a salt water blue-green alga,Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients.Int. J. Hydrogen Energy 6: 339–348.

    Article  CAS  Google Scholar 

  4. Miyake, J. and S. Kawamura (1987) Efficiency of light energy conversion to hydrogen by the photosynthetic bacteriumRhodobacter sphaeroides.Int. J. Hydrogen Energy 12: 147–149.

    Article  CAS  Google Scholar 

  5. Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park (2002) Fermentative hydrogen production by a new chemoheterotrophic bacteriumRhodopseudomonas palustris P4.Int. J. Hydrogen Energy 22: 1373–1379.

    Article  Google Scholar 

  6. Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki (1995) Characteristics of hydrogen production by AciduricEnterobacter aerogenes Strain HO-39.J. Ferment. Bioeng. 80: 571–574.

    Article  CAS  Google Scholar 

  7. Kim, M.-S., K.-W. Moon, I.-G. Lee, T.-J. Lee, and C.-K. Sung (1999) Hydrogen gas production by fermentation from various sugars usingClostridium butyricum NCIB 9576.Kor. J. Appl. Microbiol. Biotechnol. 27: 62–69.

    CAS  Google Scholar 

  8. Kumar, N. and D. Das (2000) Enhancement of hydrogen production byEnterobacter cloacae IIT-BT 08.Process Biochem. 35: 589–593.

    Article  CAS  Google Scholar 

  9. Kumar, G. R. and T. M. Vatsala (1989) Hydrogen production from glucose byCitrobacter freundii.Ind. J. Exp. Biol. 27: 824–825.

    CAS  Google Scholar 

  10. Ahn, Y., Y. J. Lee, H.-S. Kim, and S. Park (2000) Monitoring of specific methanogenic activity of granular sludge by confocal laser scanning microscopy during start-up of thermophilic upflow anaerobic sludge blanket reactor.Biotechnol. Lett. 22: 1591–1596.

    Article  CAS  Google Scholar 

  11. Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park (1999) A new chemoheterotrophic bacterium catalyzing water-gas shift reaction.Biotechnol. Lett. 21: 869–873.

    Article  CAS  Google Scholar 

  12. Robson, R. (2001) Biodiversity of hydrogenases. pp. 9–32. In: R. Cammack, M. Frey, and R. Robson (eds.).Hydrogen as a Fuel: Learning from Nature. Taylor & Francis, London, UK.

    Google Scholar 

  13. Stanier, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986)The Microbial World. 5th ed., pp. 440–451. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  14. Brosseau, J. D. and J. E. Zajic (1982) Continuous microbial production of hydrogen gas.Int. J. Hydrogen Energy 7: 623–628.

    Article  CAS  Google Scholar 

  15. Kataoka, N., A. Miy, and K. Kiriyama (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria.Wat. Sci. Tech. 36: 41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, YK., Park, M.S., Seol, EH. et al. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8, 54–57 (2003). https://doi.org/10.1007/BF02932899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932899

Keywords

Navigation