Advertisement

Biotechnology and Bioprocess Engineering

, Volume 7, Issue 5, pp 252–262 | Cite as

Production of arachidonic acid byMortierella fungi

  • Kenichi HigashiyamaEmail author
  • Shigeaki Fujikawa
  • Enoch Y. Park
  • Sakayu Shimizu
Article

Abstract

The growing interest in the application of arachidonic acid (ARA) in various fields of health and dietary requirements has elicited much attention on the industrial production of ARA-containing oil by the cultivation ofMortierella fungi. For the industrial production of ARA, various studies, such as isolation of a high-potential strain and optimization of culture conditions, have been conducted. Studies including the investigation of morphology are important because ARA is accumulated in the mycelia, and thus cultivation with high biomass concentration is essential for obtaining a high ARA yield. Combining the results derived from various studies, a high ARA yield was attained in an industrial fermentor. These ARA production techniques are applicable to the production of other polyunsaturated fatty acids (PUFAs), and will contribute to the improvement of fermentation technology especially in the field of fungal cultivation.

Keywords

arachidonic acid Mortierella morphology industrial production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ratledge, C. (1992) Microbial lipids: Commercial realities or academic curiosities. pp. 1–15. In: D. J. Kyle, and C. Ratledge (eds.),Industrial Applications of Single Cell Oils. AOCS Press, IL, USA.Google Scholar
  2. [2]
    Ymauchi, H., H. Mori, T. Kobayashi, and S. Shimizu (1983) Mass production of lipids byLipomyces starkeyi in microcomputer-aides fed-batch culture.J. Ferment. Technol. 61: 275–281.Google Scholar
  3. [3]
    Suzuk, O., T. Yokochi, and T. Yamashina (1981) Studies on production of lipids in fungi (II). Lipid compositions of six species ofMucorales inZygomycetes.J. Jpn. Oil Chem. Soc. 30: 863–868.Google Scholar
  4. [4]
    Certik, M. and S. Shimizu (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production.J. Biosci. Bioeng. 87: 1–14.CrossRefGoogle Scholar
  5. [5]
    Gill, I., and R. Valivety (1997) Polyunsaturated fatty acid, part 1: occurrence, biological activities and applications.Trends Biotechnol. 15: 401–409.CrossRefGoogle Scholar
  6. [6]
    Hollander, D., A. Tamawski, K. J. Ivey, A. Dezeery, R. D. Zipser, W. N. McKenzie, and W. D. Mcfarland (1982) Arachidonic acid protection of rat gastric mucosa against ethanol injury.J. Lab. Clin. Med. 100: 296–308.Google Scholar
  7. [7]
    Doyle, M. J., P. R. Nemeth, M. L. Skoglund, and K. G. Mandel (1989)In vivo assessment of precursor induced prostaglandin release within the rat gastric lumen.Prostaglandins 38: 581–597.CrossRefGoogle Scholar
  8. [8]
    Hebborn, P., S. Jablonska, E. H. Beutner, A. Langer, and H. Wolska (1988) Action of topically applied arachidonic acid on the skin of patients with psoriasis.Arch. Dermatol. 124: 387–391.CrossRefGoogle Scholar
  9. [9]
    Goheen, S. C., E. C. Larkin, M. Manix, and G. A. Rao (1980) Dietary arachidonic acid reduces fatty liver, increases diet consumption and weight gain in ethanol-fed rats.Lipids 15: 328–336.CrossRefGoogle Scholar
  10. [10]
    Canuto, R. A., G. Muzio, M. E. Biocca, and M. U. Dianzani (1991) Lipid peroxidation in rat AH-130 hepatoma cells enrichedin vivo with arachidonic acid.Cancer Res. 51: 4603–4608.Google Scholar
  11. [11]
    Okita, M., A. Miyamoto, Y. Wakabayashi, and A. Watanabe (1993) Improvement of Polyunsaturated Fatty Acid deficiency in decompensated cirrhotic patients by arachidonic acid-rich oil capsules. pp. 241–242. In: T. Yasugi, H. Nakamura, and M. Soma (eds.)Advances in Polyunsaturated Fatty acid Research. Elsevier Science Publishers B. V., The Netherlands.Google Scholar
  12. [12]
    Devane, W. A., L. Hanus, A. Breuer, R. G. Pertwee, L. A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, and R. Mechoulam (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science 258: 1946–1949.CrossRefGoogle Scholar
  13. [13]
    Stella, N., P. Schweitzer, and D. Piomelli (1997) A second endogenous cannabinoid that modulates long-term potential.Nature 388: 773–778.CrossRefGoogle Scholar
  14. [14]
    Carlson, S. E., S. H. Werkman, J. M. Peeples, R. J. Cooke and E. A. Tolley (1993) Arachidonic acid status correlates with first year growth in preterm infants.Proc. Natl. Acad. Sci. USA 90: 1073–1077.CrossRefGoogle Scholar
  15. [15]
    Carlson, S. E., S. H. Werkman, J. M. Peeples, R. J. Cooke, W. W. K. Koo, and E. A. Tolley (1993) The effect of marine oil-supplemented formulas with and without ei-cosapentaenoic acid on the n−3 and n−6 fatty acid status and growth of premature infants. pp. 261–264. In: T. Yasugi, H. Nakamura, and M. Soma (eds.)Advances in Polyunsaturated Fatty Acid Research Elsevier Science Publishers B. V., The Netherlands.Google Scholar
  16. [16]
    Lanting, C. I., V. Fidler, M. Huisman, B. C. L. Touwen, and E. R. Boersma (1994) Neurological defferences between 9-year-old children fed breast-milk or formula-milk as babies.Lancet 344: 1319–1322.CrossRefGoogle Scholar
  17. [17]
    O'Conner, D. L., R. Hall, D. Adamkin, N. Austad, M. Castillo, W. E. Conner, and S. J. Conner, K. Fitzgerald, S. G-. Wargo, E. E. Hartmann, J. Jacobs, J. Janowsky, A. Lucas, D. Margeson, P. Mena, M. Neuringer, M. Nesin, L. Singer, T. Stephenson, J. Szabo, and V. Zemon (2001) Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial.Pediatrics 108: 359–371.CrossRefGoogle Scholar
  18. [18]
    Birch, E. E., S. Garfield, D. R. Hoffman, R. Uauy, and D. G. Birch (2000) A randomized controlled trial of early dietary supply for long-chain polyunsaturated fatty acids and mental development in term infants.Develop. Med. Child Neurol. 42: 174–181.CrossRefGoogle Scholar
  19. [19]
    Higashiyama, K., T. Yaguchi, K. Akimoto, S. Fujikawa, and S. Shimizu (1998) Enhancement of arachidonic acid production byMortierella alpina. Abstracts of 88th AOCS Annual Meeting, p. 34. May 10–13. Chicago, IL, USA.Google Scholar
  20. [20]
    Singh, A., and O. P. Ward (1997) Production of high yields of arachidonic acid in a fed-batch system byMortierella alpina ATCC 32222.Appl. Microbiol. Biotechnol. 48: 1–5.CrossRefGoogle Scholar
  21. [21]
    Totani, N., K. Someya, and K. Oba (1992) Industrial production of arachidonic acid byMortierella. pp. 52–60. In: D. J. Kyle, and C. Ratledge (eds.)Industrial Applica-tions of Single Cell Oils. AOCS Press, IL, USA.Google Scholar
  22. [22]
    Li, Z. Y., Y. Lu, V. B. Yadward, and O. P. Ward (1995) Process for production of arachidonic acid concentrate by a strain ofMortierella alpina.Can. J. Chem. Eng. 73: 135–139.CrossRefGoogle Scholar
  23. [23]
    Eroshin, V. K., A. D. Satroutdinov, E. G. Dedyukhina, and T. I. Christyakova (2000) Arachidonic acid production byMortierella alpina with growth-coupled lipid synthesis.Process Biochem. 35: 1171–1175.CrossRefGoogle Scholar
  24. [24]
    Kyle, D. J. (1996) Arachidonic acid and methods for the production and use thereof.PCT Patent WO96/21037.Google Scholar
  25. [25]
    Chen, H. C., C. C. Chang, and C. X. Chen (1997) Optimization of arachidonic acid production byMortierella alpina Wuji-H14 isolate.J. Am. Oil Chem. Soc. 74: 569–578.CrossRefGoogle Scholar
  26. [26]
    Park, C.-Y., S.-J. Ha, C. Kim, and Y-W. Ryu (1999) Production of arachidonic acid byMortierella alpina DSA-12.Abstracts of 5th Asia Pacific Biochemical Engineering Conference. November 15–18. Phuket, Thailand.Google Scholar
  27. [27]
    Lindberg, A. M. and G. Molin (1993) Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by fungusMortierella alpina CBS343.66 in fermentor cultures.Appl. Microbiol. Biotechnol. 39: 450–455.CrossRefGoogle Scholar
  28. [28]
    Aki, T., Y. Nagahata, K. Ishihara, Y. Tanaka, T. Morinaga, K. Higashiyama, K. Akimoto, S. Fujikawa, S. Kawamoto, S. Shigeta, K. Ono, and O. Suzuki (2001) Production of arachidonic acid by filamentous fungus,Mortierella alliacea strain YN-15.J. Am. Oil Chem. Soc. 78: 599–604.CrossRefGoogle Scholar
  29. [29]
    Berkeley, W. (1996) Method for arachidonic acid production.Japanese Patent H8-214893.Google Scholar
  30. [30]
    Sajbidor, J., S. Dobronova, and M. Certik (1990) Arachidonic Acid Production byMortierella SP. S-17.Biotechnol. Lett 12: 455–456.CrossRefGoogle Scholar
  31. [31]
    Chaudhuri, S., S. Ghosh, D. K. Bhattacharya, and S. Bandyopadhyay (1998) Effect of mustard meal on the production of arachidonic acid byMortierella elongata SC-208.J. Am. Oil Chem. Soc. 75: 1053–1055.Google Scholar
  32. [32]
    Cheng, M. H., T. H. Walker, G. J. Hulbert, and D. R. Raman (1999) Fungal production of eicosapentaenoic acid and arachidonic acid from industrial waste streams and crude soybean oil.Bioresource Technol. 67: 101–110.CrossRefGoogle Scholar
  33. [33]
    Totani, N., A. Watanabe, and K. Oba (1987) An improved method of arachidonic acid production byMortierella alpina.J. Jpn. Oil Chem. Soc. 36: 328–331.Google Scholar
  34. [34]
    Stredanska, S., D. Slugen, M. Stredansky, and J. Grego (1993) Arachidonic acid production byMortierella alpina grown on solid substrates.W. J. Microbiol. Biotechnol. 9: 511–513.CrossRefGoogle Scholar
  35. [35]
    Amano, N., Y. Shinmen, K. Akimoto, H. Kawashima, T. Amachi, S. Shimizu, and H. Yamada (1992) Chemotaxonomic significance of fatty acid composition in the genusMortierella (Zygomycetes, Mortierellaceae).Mycotaxon 94: 257–265.Google Scholar
  36. [36]
    Hempenius, R. A., J. M. Van-Delft, M. Prinsen, and B. A. Lina (1997) Preliminary safety assessment of an arachidonic acid-enriched oil derived fromMortierella alpina: summary of toxicological data.Food Chem. Toxicol. 35: 573–581.CrossRefGoogle Scholar
  37. [37]
    Koskelo, E. K., K. Boswell, L. Carl, S. Lanoue, C. Kelly, and D. Kyle (1997) High levels of dietary arachidonic acid triglyceride exhibit no subchronic toxicity in rats.Lipids 32: 397–405.CrossRefGoogle Scholar
  38. [38]
    Streekstra, H. (1997) On the safety ofMortierella alpina for the production of food ingredients, such as arachidonic acid.J. Biotechnol. 56: 153–165.CrossRefGoogle Scholar
  39. [39]
    Burns, R. A., G. J. Wibert, D. A. Diersen-Schade, and C. M. Kelly (1999) Evaluation of single-cell sources of docosahexaenoic acid and arachidonic acid: 3-month rat oral safety study with an in utero phase.Food Chem. Toxicol. 37: 23–36.CrossRefGoogle Scholar
  40. [40]
    Whitaker, A. and P. A. Long (1973) Fungal pelleting.Process Biochem. 8: 27–31.Google Scholar
  41. [41]
    Vardar, F. (1983) Problems of mass transfer and momentum transfer in large fermenters.Process Biochem. 18: 21–23.Google Scholar
  42. [42]
    Clark, D. S. (1962) Submerged citric acid fermentation of ferrocyanide treated beet molasses: morphology of pellets ofAspergillus niger.Can. J. Microbiol. 8: 133–136.CrossRefGoogle Scholar
  43. [43]
    Metz, B., N. W. F. Kossen, and J. C. Van Suizdum (1979) The rheology of mold suspensions.Adv. Biochem. Eng. 11: 103.Google Scholar
  44. [44]
    Hosobuchi, M., F. Fukui, H. Matsukawa, T. Suzuki, and H. Yoshikawa (1993) Morphology control of preculture during production of ML-236B, a precursor of pravastatin sodium, byPenicillium citrinum.J. Ferment. Bioeng. 76: 476–481.CrossRefGoogle Scholar
  45. [45]
    Smith, J. J., M. D. Lilly, and R. I. Fox (1990) The effect of agitation on the morphology and penicillin production ofPenicillium chrysogenum.Biotechnol. Bioeng. 35: 1011–1023.CrossRefGoogle Scholar
  46. [46]
    Byrne, G. S. and O. P. Ward (1989) Effect of nutrition on pellet formation byRhizopus arrhizus.Biotechnol. Bioeng. 33: 912–914.CrossRefGoogle Scholar
  47. [47]
    Calam, C. T. (1976) Starting investigational and production cultures.Process Biochem. 11: 7.Google Scholar
  48. [48]
    MacKenzie, D. A., L. C. G. Gendron, D. J. Jeenes, and D. B. Archer (1994) Physiological optimization of secreted protein production byAspergillus niger.Enzyme Microbiol. Technol. 16: 276–280.CrossRefGoogle Scholar
  49. [49]
    Shinmen, Y., S. Shimizu, K. Akimoto, H. Kawashima, and H. Yamada (1989) Production of arachidonic acid byMortierella fungi: selection of a potent producer and optimization of culture conditions for large-scale production.Appl. Microbiol. Biotechnol. 31: 11–16.CrossRefGoogle Scholar
  50. [50]
    Higashiyama, K., T. Yaguchi, K. Akimoto, S. Fujikawa, and S. Shimizu (1998) Enhancement of arachidonic acid production byMortierella alpina 1S-4.J. Am. Oil Chem Soc. 75: 1501–1505.CrossRefGoogle Scholar
  51. [51]
    Park, E. Y., Y. Koike, K. Higashiyama, S. Fujikawa, and M. Okabe (1999) Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures ofMortierella alpina.J. Biosci. Bioeng. 88: 61–67.CrossRefGoogle Scholar
  52. [52]
    Totani, N., K. Hyodo, and T. Ueda (2000) A study on new nitrogen source for cultivation of genusMortierella.J. Jpn. Oil Chem. Soc. 49: 479–485.Google Scholar
  53. [53]
    Koike, Y., H. J. Cai, K. Higashiyama, S. Fujikawa, and E. Y. Park (2001) Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures ofMortierella alpina.J. Biosci. Bioeng. 91: 382–389.CrossRefGoogle Scholar
  54. [54]
    Park, E. Y., Y. Koike, H. J. Cai, K. Higashiyama, and S. Fujikawa (2001) Morphological diversity ofMortierella alpina: effect of consumed carbon to nitrogen ratio in flask culture.Biotechnol. Bioprocess Eng. 6: 161–166.CrossRefGoogle Scholar
  55. [55]
    Aiba, S., A. E. Humphrey, and N. F. Millis (1973)Biochemical Engineering. 2nd ed., pp. 29–30. University of Tokyo Press, Japan.Google Scholar
  56. [56]
    Totani, N., K. Hyodo, and T. Ueda (2000) Minerals essential for growth of the filamentous fungus,Mortierella alpina.J. Jpn. Oil Chem. Soc. 49: 487–493.Google Scholar
  57. [57]
    Sajbidor, J., D. Kozelouhova, and M. Certik (1992) Influence of some metal ions on the lipid content and arachidonic acid production byMortierella sp.Folia Microbiol. 37: 404–406.CrossRefGoogle Scholar
  58. [58]
    Guchhait, R. H., S. E. Polakis, P. Dimroth, E. Stoll, J. Moss, and M. D. Lane (1974) Acetyl-CoA carboxylase system ofE. coli: Purification and properties of the biotin protein carboxylase, carboxytransferase and carboxyl carrier protein components.J. Biol. Chem. 249: 6633–6645.Google Scholar
  59. [59]
    Braun, S. and S. E. Vecht-Lifshitz (1991) Mycelial morphology and metabolite production.Trend Biotechnol. 9: 63–68.Google Scholar
  60. [60]
    Kosakai, Y., Y. S. Park, and M. Okabe (1997) Enhancement ofL(+)-lactic acid production using mycelial flocs ofRhizopus oryzae.Biotechnol. Bioeng. 55: 461–470.CrossRefGoogle Scholar
  61. [61]
    Smart, K. A., C. A. Boulton, E. Hinchliffe, and S. Molzahn (1995) Effect of physiological stress on the surface properties of brewing yeasts.J. Am. Soc. Brew. Chem. 53: 33–38.Google Scholar
  62. [62]
    Higashiyama, K., T. Yaguchi, K. Akimoto, S. Fujikawa, and S. Shimizu (1998) Effects of mineral addition on the growth morphology of and arachidonic acid production byMortierella alpina 1S-4.J. Am. Oil Chem. Soc. 75: 1815–1819.CrossRefGoogle Scholar
  63. [63]
    Davies, R. J., J. E. Holdsworth, and S. L. Reader (1990) The effect of low oxygen uptake rate on the fatty acid profile of the oleaginous yeastApiotrichum curvatum.Appl. Microbiol. Biotechnol. 33: 569–573, with an erratum atibid. (1991) 34: 832–833.CrossRefGoogle Scholar
  64. [64]
    Thomas, K., A. Rutter, M. Suller, J. Harwood, and D. Lloyd (1998) Oxygen induces fatty acid (n-6)-desatu-ration independently of temperature inAcanthamoeba castellanii.FEBS Lett. 425: 171–174.CrossRefGoogle Scholar
  65. [65]
    Kendrick, A. and C. Ratledge (1992) Lipid formation in oleaginous moldEntomophthora exitalis growth in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids.Appl. Microbiol. Biotechnol. 37: 18–22.CrossRefGoogle Scholar
  66. [66]
    Nakahara, T., T. Yokochi, Y. Kamisaka, and O. Suzuki (1992) Gamma-linolenic acid from genusMortierella. pp. 61–97. In: D. J. Kyle, and C. Ratledge (eds.),Industrial Applications of Single Cell Oils. AOCS Press, IL, USA.Google Scholar
  67. [67]
    Du Preez, J. C., M. Immelman, J. L. F. Kock, and S. G. Killian (1997) The effect of acetic acid concentration on the growth and production of gamma-linolenic acid byMucor circinelloides CBS203.28 in fed-batch culture.W. J. Microbiol. Biotechnol. 13: 81–87.CrossRefGoogle Scholar
  68. [68]
    Hansson, L., M. Dostalek, and B. Sorenby (1989) Production of γ-linolenic acid by fungusMucor rouxii in fed-batch and continuous culture.Appl. Microbiol. Biotechnol. 31: 223–227.CrossRefGoogle Scholar
  69. [69]
    Emelyanova, E. V. (1997) Lipid and γ-linolenic acid production byMucor inaquisporus.Process Biochem. 32: 173–177.CrossRefGoogle Scholar
  70. [70]
    Hiruta, O., K. Yamamura, H. Takebe, T. Futamura, K. Iinuma, and H. Tanaka (1997) Application of Maxblend® fermentor for microbial process.J. Ferment. Bioeng. 83: 79–86.CrossRefGoogle Scholar
  71. [71]
    Shimizu, S., H. Kawashima, Y. Shinmen, K. Akimoto, and H. Yamada (1988) Production of eicosapentaenoic acid byMortierella fungi.J. Am. Oil Chem. Soc. 65: 1455–1459.CrossRefGoogle Scholar
  72. [72]
    Higashiyama, K., K. Murakami, H. Tsujimura, N. Matsumoto, and S. Fujikawa (1999) Effects of dissolved oxygen on the morphology of an arachidonic acid production byMortierella alpina 1S-4.Biotechnol. Bioeng. 63: 442–448.CrossRefGoogle Scholar
  73. [73]
    Humphrey, A. (1998) Sake flask to fermentor: what have we learned.Biotechnol. Prog. 14: 3–7.CrossRefGoogle Scholar
  74. [74]
    Hiruta, O., T. Futamura, H. Takebe, A. Satoh, Y. Kami-saka, T. Yokochi, T. Nakahara, and O. Suzuki (1996) Optimization and scale-up of γ-linolenic acid production byMortierella ramanniana MM 15-1, a high γ-linolenic acid producing mutant.J. Ferment. Bioeng. 82: 366–370.CrossRefGoogle Scholar
  75. [75]
    Tsujimura, H., M. Takaya, K. Katano, N. Matsumoto, Y. S. Park, and M. Okabe (1994) Scaleup of peroxidase production byArthromyces ramosus based on analysis of fluid velocity distribution.J. Ferment. Bioeng. 77: 650–654.CrossRefGoogle Scholar
  76. [76]
    Tsujimura, H. and N. Matsumoto (1994) Scale-up of mycelial fermentation based on analysis of fluid velocity distribution.Biosci. Industry 52: 805–807.Google Scholar
  77. [77]
    Higashiyama, K., S. Fujikawa, E. Y. Park, and M. Okabe (1999) Image analysis of morphological change during arachidonic acid production byMortierella alpina 1S-4.J. Biosci. Bioeng. 87: 489–494.CrossRefGoogle Scholar
  78. [78]
    Shimizu, S., K. Akimoto, H. Kawashima, Y. Shinmen, and H. Yamada (1989) Production of dihomo-γ-linolenic acid byM. alpina 1S-4.J. Am. Oil Chem. Soc. 66: 237–241.CrossRefGoogle Scholar
  79. [79]
    Shimizu, S., S. Akimoto, Y. Shinmen, H. Kawashima, M. Sugano, and H. Yamada (1991) Seasamine is a potent and specific inhibitor of δ5 desaturase in polyunsaturated fatty acid biosynthesis.Lipids 26: 512–516.CrossRefGoogle Scholar
  80. [80]
    Shimizu, S., S. Jareonkitmongkol, H. Kawashima, K. Akimoto, and H. Yamada (1992) Inhibitory effect of curcumin on the fatty acid desaturation inM. alpina 1S-4 and rat liver microsomes.Lipids 27: 509–512.CrossRefGoogle Scholar
  81. [81]
    Certik, M., E. Sakuradani, and S. Shimizu (1998) Desaturase-defective fungal mutants: useful tools for the regulation and overproduction of polyunsaturated fatty acids.Trend. Biotechnol. 16: 500–505.CrossRefGoogle Scholar
  82. [82]
    Kawashima, H., K. Akimoto, K. Higashiyama, S. Fujikawa, and S. Shimizu (2000) Industrial production of dihomo-γ-linolenic acid by a δ5 desaturase-defective mutant ofMortierella alpina 1S-4 fungus.J. Am. Oil Chem. Soc. 77: 1135–1138.CrossRefGoogle Scholar
  83. [83]
    Kawashima, H., M. Nishihara, Y. Hirano, N. Kamada, K. Akimoto, K. Konishi, and S. Shimizu (1997) Production of 5,8,11-eicosatrienoic acid (Mead acid) by a δ6 desaturation activity-enhanced mutant derived from a δ12 desaturase-defective mutant of an arachidonic acid-producing fungus,Mortierella alpina 1S-4.Appl. Environ. Microbiol. 63: 1820–1825.Google Scholar
  84. [84]
    Kamada, N., H. Kawashima, E. Sakuradani, K. Akimoto, J. Ogawa, and S. Shimizu (1999) Production of 8,11-cis-eicosadienoic acid by a δ5 and δ12 desaturase-defective mutant derived from tha arachidonic acid-producing fungusMortierella alpina 1S-4.J. Am. Oil Chem. Soc. 76: 1269–1274.CrossRefGoogle Scholar
  85. [85]
    Kawashima, H., E. Sakuradani, N. Kamada, K. Akimoto, K. Konishi, J. Ogawa, and S. Shimizu (1998) Production of 8,11,14,17-cis-eicosatetraenoic acid by a δ5 and δ12 desaturase-defective mutant of an arachidonic acid-producing fungusMortierella alpina 1S-4.J. Am. Oil Chem. Soc. 75: 1495–1500.CrossRefGoogle Scholar
  86. [86]
    Thomas, C. R. (1992) Image analysis: putting filamentous microorganisms in the picture.Trend Biotechnol. 10: 343–348.CrossRefGoogle Scholar
  87. [87]
    Park, E. Y. (1998) Application of image analysis for efficient cultivation of microorganisms.Recent Res. Devel. Biotechnol. Bioeng. 1: 37–58.Google Scholar
  88. [88]
    Park, E. Y., S. Tamura, Y. Toriyama, and M. Okabe (1997) Mycelial pellet intrastructure visualization and viability prediction in a culture ofStreptomyces fradiae using confocal scanning laser microscopy.J. Biosci. Bioeng. 84: 483–486.Google Scholar
  89. [89]
    Wittler, R., H. Baumgartl, D. W. Lubbers, and K. Schugerl (1986) Investigation of oxygen transfer intoPenicillium chrysogenum pellets by microprobe measurement.Biotechnol. Bioeng 28: 1024–1036.CrossRefGoogle Scholar
  90. [90]
    Hamanaka, T., K. Higashiyama, S. Fujikawa, and E. Y. Park (2001) Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture ofMortierella alpina.Appl. Microbiol. Biotechnol. 56: 233–238.CrossRefGoogle Scholar
  91. [91]
    Greenspan, P., E. P. Mayer, and S. D. Fowler (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets.J. Cell Biol. 100: 965–973.CrossRefGoogle Scholar
  92. [92]
    Schwan, H. P. (1957) Electrical properties of tissue and cell suspensions.Adv. Biol. Med. Phys. 5: 147–209.Google Scholar
  93. [93]
    Asami, K. (1998) Dielectric relaxation spectroscopy of biological cell suspensions. pp. 333–349. In: V. A. Hackley, and J. Texter (eds.)Handbook on Ultrasonic and Dielectric Characterization Techniques for Suspended Particulates. The American Ceramic Society, Westerville, USA.Google Scholar
  94. [94]
    Matanguihan, R. M., K. B. Konstantinov, and T. Yoshida (1994) Dielectric measurement to monitor the growth and the physiological states of biological cells.Bioprocess Eng. 11: 213–222.CrossRefGoogle Scholar
  95. [95]
    Krairak, S., K. Yamamura, M. Nakajima, H. Shimizu, and S. Shioya (1999) On-line monitoring of fungal cell concentration by dielectric spectroscopy.J. Biotechnol. 69: 115–123.CrossRefGoogle Scholar
  96. [96]
    Higashiyama, K., T. Sugimoto, T. Yonezawa, S. Fujikawa, and K. Asami (1999) Dielectric analysis for estimation of oil content in the mycelia ofMortierella alpina Biotechnol. Bioeng. 65: 537–541.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2002

Authors and Affiliations

  • Kenichi Higashiyama
    • 1
    Email author
  • Shigeaki Fujikawa
    • 1
  • Enoch Y. Park
    • 2
  • Sakayu Shimizu
    • 3
  1. 1.Institute for Fundamental ResearchSuntory LimitedOsakaJapan
  2. 2.Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of AgricultureShizuoka UniversityShizuokaJapan
  3. 3.Division of Applied Life Science, Graduate School of Agricultural SciencesKyoto UniversityKyotoJapan

Personalised recommendations