Statistische Hefte

, Volume 25, Issue 1, pp 261–295 | Cite as

Optimal triangulation of large real world input-output matrices

  • M. Grötschel
  • M. Jünger
  • G. Reinelt
Articles

Abstract

In this paper we present optimum triangulations of a large number of input-output matrices. In particular, we report about a series of (44,44)-matrices of the years 1959, 1965, 1970, 1975 of the countries of the European Community, about all (56, 56)-matrices compiled by Deutsches Institut für Wirtschaftsforschung for the Federal Republic of Germany, and about the (60,60)-matrices of the Statistisches Bundesamt of the Federal Republic of Germany. These optimum triangulation were obtained with a code developed by the authors which utilizes new polyhedral results for the triangulation problem in a linear programming cutting plane framework. With this code the range of solvability of triangulation problems was more than doubled (in terms of sector numbers) compared to previous work. In particular, for none of the triangulation problems mentioned above optimum solutions were known before. Moreover, we discuss various claims about properties of optimum solutions made in the literature and question some common concepts of analysing triangulated input-output matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Garey, M.R.; Johnson, D.S. [1979]: Computers and intractibility: a guide to the theory of NP-completeness. Freeman, San Francisco, 1979.MATHGoogle Scholar
  2. [2]
    Grötschel, M.; Jünger, M.; Reinelt, G. [1982a]: On the acyclic subgraph polytope. WP 82215-OR, Institut für Operations Research, Universität Bonn, 1982.Google Scholar
  3. [3]
    Grötschel, M.; Jünger, M.; Reinelt, G. [1982b]: Facets of the linear ordering polytope. WP 82217-OR, Institut für Operations Research, Universität Bonn, 1982.Google Scholar
  4. [4]
    Grötschel, M.; Jünger, M.; Reinelt, G. [1982c]: A cutting plane algorithm for the linear ordering problem. WP 82219-OR, Institut für Operations Research, Universität Bonn, 1982.Google Scholar
  5. [5]
    Helmstädter, E. [1964]: Die Dreiecksform der Input-Output-Matrix und ihre möglichen Wandlungen im Wachstumsproeß. In F. Neumark (Hrsg.): Strukturwandlungen einer wachsenden Wirtschaft. Schriften des Vereins für Socialpolitik, NF Band 30/II (1964).Google Scholar
  6. [6]
    Kaas, R. [1981]: A branch and bound algorithm for the acyclic subgraph problem. European Journal of Operational Research 8 (1981), 355–362.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Wessels, H. [1981]: Triangulation und Blocktriangulation von Input-Output-Tabellen. Deutsches Institut für Wirtschaftsforschung: Beiträge zur Strukturforschung, Heft 63, Berlin 1981.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Grötschel
    • 1
  • M. Jünger
    • 1
  • G. Reinelt
    • 1
  1. 1.Institut für Mathematik Lehrstuhl für Angewandte Mathematik IIUniversität AugsburgAugsburgWest Germany

Personalised recommendations