Biotechnology and Bioprocess Engineering

, Volume 10, Issue 6, pp 505–509

Electrical recognition of label-free oligonucleotides upon streptavidin-modified electrode surfaces

  • Jong Wan Park
  • Ho Sub Jung
  • Hea Yeon Lee
  • Tomoji Kawai


For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in Fe(CN)63−/Fe(CN)64− solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.


direct electrochemical detection label-free DNA step-by-step procedure streptavidinbiotin system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ebersole, R. C., J. A. Miller, J. R. Moran, and M. D. Ward (1990) Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors.J. Am. Chem. Soc. 112: 3239–3241.CrossRefGoogle Scholar
  2. [2]
    Wang, J., G. Rivas, J. R. Fernandes, J. L. L. Paz, M. Jiang, and R. Waymire (1998) Indicator-free electrochemical DNA hybridization biosensor.Anal. Chim. Acta 375: 197–203.CrossRefGoogle Scholar
  3. [3]
    Johnston, D. H., K. C. Glasgow, and H. H. Thorp (1995) Electrochemical measurement of the solvent accessibility of nucleobasis using electron transfer between DNA and metal complexes.J. Am. Chem. Soc. 117: 8933–8938.CrossRefGoogle Scholar
  4. [4]
    Park, J. W., H. Y. Lee, J. M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, and T. Kawai (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using the biotin-modified DNA(ss) on streptavidin-medified gold electrode.J. Biosci. Bioeng. 97: 29–32.Google Scholar
  5. [5]
    Kim, J. M., R. Yamasaki, J. W. Park, H. S. Jung, H. Y. Lee, and T. Kawai (2004) Stable high ordered protein layers confirmed by atomic force microscopy and quartz crystal microbalance.J. Biosci. Bioeng. 97: 140–142.Google Scholar
  6. [6]
    Lee, H. Y., J. W. Park, H. S. Jung, J. M. Kim, and T. Kawai (2004) Electrochemical assay of nonlabeled DNA chip and SNOM imaging by using streptavidin-biotin interaction.J. Nanosci. Nanotechnol. 4: 882–885.CrossRefGoogle Scholar
  7. [7]
    Lee, H. Y., J. W. Park, and T. Kawai (2004) SNPs feasibility of nonlabeled oligonucletides onby using electrochemical sensing.Electroanalysis 16: 1999–2002.CrossRefGoogle Scholar
  8. [8]
    Kim, J. M., H. S. Jung, J. W. Park, H. Y. Lee, and T. Kawai (2004) AFM phase lag mapping for protein-DNA oligonucleotide complexes.Anal. Chim. Acta 525: 151–157.CrossRefGoogle Scholar
  9. [9]
    Kelley, S. O., J. K. Barton, N. M. Jackson, and M. G. Hill (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode.Bioconjugate Chem. 8: 31–37.CrossRefGoogle Scholar
  10. [10]
    Drummond, T. G., M. G. Hill, and J. K. Barton (2003) Electrochemical DNA sensors.Nat. Biotechnol. 21: 1192–1199.CrossRefGoogle Scholar
  11. [11]
    Napier, M. E., C. R. Loomis, M. F. Sistare, J. Kim, A. E. Eckhardt, and H. H. Thorp (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization.Bioconjugate Chem. 8: 906–913.CrossRefGoogle Scholar
  12. [12]
    Yang, M., M. E. McGovern, and M. Thompson (1997) Genosensor technology and the detection of interfacial nucleic acid chemistry.Anal. Chim. Acta 346: 259–275.Google Scholar
  13. [13]
    Sosnowski, R. G., E. Tu, W. F. Butler, J. P. O’Connell, and M. J. Heller (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control.Proc. Natl. Acad. Sci. 94: 1119–1123.CrossRefGoogle Scholar
  14. [14]
    Yu, C. J., Y. Wan, H. Yowanto, J. Li, C. Tao, M. D. James, C. L. Tan, G. F. Blackburn, and T. J. Meade (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes.J. Am. Chem. Soc. 123: 11155–11161.CrossRefGoogle Scholar
  15. [15]
    Zhang, L. and X. Lin (2005) Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid.Anal. Bioanal. Chem. 382: 1669–1677.CrossRefGoogle Scholar
  16. [16]
    Simokawa, N., A. Hirano, and M. Sugawara (2001) An ion-channel sensor for abasic sites in DNA.Anal. Sci. 17: 1379–1382.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Jong Wan Park
    • 1
  • Ho Sub Jung
    • 1
    • 2
  • Hea Yeon Lee
    • 1
    • 2
  • Tomoji Kawai
    • 1
    • 2
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology Corporation (JST)Kawaguchi, SaitamaJapan

Personalised recommendations