Advertisement

Folia Microbiologica

, Volume 52, Issue 6, pp 585–592 | Cite as

Cell-protective and antioxidant activity of two groups of synthetic amphiphilic compounds — Phenolics and amineN-oxides

  • A. KrasowskaEmail author
  • K. Sigler
Article

Abstract

Two classes of newly synthesized amphiphilic compounds, phenolic antioxidants (“phenolics”) andN-oxides exertin vivo antioxidant effects on liveS. cerevisiae cells. Both groups have low toxicity, phenolics being more toxic thanN-oxides and compounds with a longer alkyl chain having higher toxicity than those with a shorter alkyl chain. Phenolic antioxidants protect yeast cells exposed to the superoxide producer paraquat and peroxyl generatorert-butylhydroperoxide better thanN-oxides at 3-fold higher concentration. Both types of antioxidants enhance the survival of pro-oxidant-exposed cells ofS. cerevisiae mutants deficient in cytosolic and/or mitochondrial superoxide dismutase and could be good compounds which mimic the role of superoxide dismutases. The results of measurement of antioxidant activity in anin vitro chemiluminescence test differ from the results obtainedin vivo withS. cerevisiae superoxide dismutase mutants. In contrast to their action on live cells, phenolics are less effective thanN-oxides in preventing lipid peroxidation of an emulsion of lipids isolated fromS. cerevisiae membranes.

Keywords

Alkyl Chain Paraquat TBHP Lipid Emulsion Peroxy Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AAPH

1,1′-azobis(3-amidinopropane) dihydrochloride

IC50

inhibitory concentration (50 % reduction of growth)

LD50

lethal dose (50 % killing)

MCcrit

critical micelle concentration

NBD-PE

N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (‘nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine’)

PDR

pleiotropic drug resistance

ROS

reactive oxygen species

SOD

superoxide dismutase (EC 1.15.1.1)

TBHP

tert-butylhydroperoxide

TBRS

thiobarbituric acid-reactive substances

TMA-DPH

N,N,N-trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl)phenylammonium 4-toluenesulfonate (‘trimethylammonio-diphenylhexatriene’)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balzi E., Chen W., Ulaszewski S., Capieaux E., Goffeau A.: The multidrug resistance gene PDR1 fromSaccharomyces cerevisiae.J.Biol.Chem. 262, 16871–16879 (1987).PubMedGoogle Scholar
  2. Bartosz G.: Use of spectroscopic probes for detection of reactive oxygen species.Clin.Chim.Acta 368, 53–76 (2006).PubMedCrossRefGoogle Scholar
  3. Beckman K.B., Ames B.N.: The free radical theory of aging matures.Physiol.Rev. 78, 547–581 (1998).PubMedGoogle Scholar
  4. Biliński T., Lukaszkiewicz J., Śledziewski A.: Demonstration of anaerobic catalase synthesis in thecz1 mutant ofSaccharomyces cerevisiae.Biochem.Biophys.Res.Commun. 83, 1225–1233 (1978).PubMedCrossRefGoogle Scholar
  5. Buettner G.R.: The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate.Arch.Biochem.Biophys. 300, 535–543 (1993).PubMedCrossRefGoogle Scholar
  6. Campbell L.D., Dwek R.A.: Fluorescence, pp. 91–125 inFluorescence in Biological Spectroscopy (Elias P., Ed.). Benjamin Cummings, Menlo Park 1984.Google Scholar
  7. Damiani E., Carloni P., Stipa P., Greci L.: Reactivity of an indolinic aminoxyl with superoxide anion and hydroxyl radicals.Free Rad.Res. 31, 2405–2412 (1999).CrossRefGoogle Scholar
  8. Damiani E., Greci L., Rizzoli C.: Reaction of indolinolic aminoxyls with nitric oxide.J.Chem.Soc.Perkin Trans.II, 1139–1144 (2001).Google Scholar
  9. Galati G., O’Brien P.J.: Potential toxicity of flavonoids and other dietary phenolics: significance for their chemoprotective and anticancer properties.Free Rad.Biol.Med. 37, 287–303 (2004).PubMedCrossRefGoogle Scholar
  10. Halliwell B., Gutteridge J.M.C.:Free Radicals in Biology and Medicine, 2nd ed., pp. 196–200. Oxford University Press, Oxford (UK) 1989.Google Scholar
  11. Hiramoto K., Miura Y., Ohnuki G., Kato T., Kikugawa K.: Are water-soluble natural antioxidants synergistic in combination with α-tocopherol?J.Oleo Sci. 51, 569–576 (2002).Google Scholar
  12. Kleszczynska H., Oświęcimska M., Bonarska D., Sarapuk J.: Antioxidative properties of pyrrolidinum and piperidinum salts.Z.Natursforsch. 57, 344–347 (2002).Google Scholar
  13. Kleszczynska H., Bonarska D., Pruchnik H., Bielecki K., Piasecki A., Luczyński J., Sarapuk J.: Antioxidative activity of newN-oxides of tertiary amines: membrane model and chromogen studies.Z.Natursforsch. 60, 567–571 (2005).Google Scholar
  14. Kleszczynska H., Bielecki K., Sarapuk J., Bonarska-Kujawa D., Pruchnik H., Trela Z., Luczyński J.: Biological activity of newN-oxides of tertiary amines.Z.Natursforsch. 61, 715–720 (2006).Google Scholar
  15. Krasowska A., Oświęcimska M., Pasternak A., Chmielewska L., Witek S., Sigler K.: New phenolic antioxidants of PYA and PYE lass increase the resistanceS. cerevisiae strain SP4, its SOD- and catalase-deficient mutants to lipophilic oxidants.Folia Microbiol. 44, 657–662 (1999).CrossRefGoogle Scholar
  16. Krasowska A., Lukaszewicz M., Oświęcimska M., Witek S., Sigler K.: Spontaneous and radical-induced plasma membrane lipid peroxidation in differently oxidant-sensitive yeast species and its suppression by antioxidants.Folia Microbiol. 45, 509–514 (2000).CrossRefGoogle Scholar
  17. Krasowska A., Stasiuk M., Oświęcimska M., Kozubek A., Bień M., Witek S., Sigler K.: Suppression of radical-induced lipid peroxidation in a model system by alkyl esters of cinnamate quaternary ammonium salts.Z.Naturforsch. 56c, 878–885 (2001).Google Scholar
  18. Krasowska A., Chmielewska L., Gapa D., Prescha A., Váchová L., Sigler K.: Viability and formation of conjugated dienes in plasma membrane lipids ofS. cerevisiae, S. pombe, R. glutinis andC. albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants.Folia Microbiol. 47, 145–151 (2002).CrossRefGoogle Scholar
  19. Krasowska A., Dziadkowiec D., Lukaszewicz M., Wojtowicz K., Sigler K.: Effect of antioxidants onS. cerevisiae mutants deficient in superoxide dismutases.Folia Microbiol. 48, 754–760 (2003).CrossRefGoogle Scholar
  20. Krasowska A., Piasecki A., Polinceusz A., Prescha A., Sigler K.: Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient SOD mimics, antioxidants and lipid peroxidation blockers in yeast.Folia Microbiol. 51, 99–107 (2006).CrossRefGoogle Scholar
  21. Krasowska A., Piasecki A., Murzyn A., Sigler K.: Assaying the antioxidant and radical scavenging properties of aliphatic mono- and di-N-oxides in SOD-deficient yeast and in a chemiluminescence test.Folia Microbiol. 52, 45–51 (2007).CrossRefGoogle Scholar
  22. Lakowicz J.R.: Fluorescence polarization, pp. 112–151 inPrinciples of Fluorescence Spectroscopy. Plenum Press, New York-London 1983.Google Scholar
  23. Lentz B.R.: Membrane “fluidity” from fluorescence anisotropy measurements, pp. 13–41 inSpectroscopic Membrane Probes, Vol. 1 (M. Leslie, L. Loew, Eds). CRC Press, Boca Raton (USA) 1988.Google Scholar
  24. Łukaszewicz M., Szopa J., Krasowska A.: Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants.Food Chem. 88, 225–231 (2004).CrossRefGoogle Scholar
  25. McKeown S.R., Cowen R.L., Williams K.J.: Bioreductive drugs: from concept to clinic.Clin.Oncol. 19, 427–442 (2007).CrossRefGoogle Scholar
  26. Packer J.E., Slater T.F., Wilson R.L.: Direct observation of a free radical interaction between vitamin E and vitamin C.Nature 278, 737–738 (1979).PubMedCrossRefGoogle Scholar
  27. Samuni A.M., Barenholz Y.: Site-activity relationship of nitroxide radical’s antioxidative effect.Free Rad.Biol.Med. 34, 177–185 (2003).PubMedCrossRefGoogle Scholar
  28. Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms — I. Microbialvs. higher cells — damage and defenses in relation to cell aging and death.Folia Microbiol. 44, 587–624 (1999).CrossRefGoogle Scholar
  29. Stipa P., Carloni P., Greci L., Damiani E.: Synthesis and thermal stability of alkoxyamines.Polymer Degrad.Stabil. 55, 323–327 (1997).CrossRefGoogle Scholar
  30. Toxicological Report no. OS-17/00. Institute of Organic Industry, Pszczyna (Poland) 2000.Google Scholar
  31. Toxicological Report no. OS-15/06. Institute of Organic Industry, Pszczyna (Poland) 2006.Google Scholar
  32. Warisnoicharoen W., Lansley A.B., Lawrence K.J.: Toxicological evaluation of mixtures of nonionic surfactants, alone and in combination with oil.J.Pharm.Sci. 92, 859–868 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  1. 1.Faculty of BiotechnologyWrocław UniversityWrocławPoland
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations