Folia Microbiologica

, Volume 52, Issue 6, pp 563–572 | Cite as

Chromosome segregation inBacillus subtilis



Bacillus subtilis, a Gram-positive bacterium commonly found in soil, is an excellent model organism for the study of basic cell processes, such as cell division and cell differentiation, called sporulation. InB. subtilis the essential genetic information is carried on a single circular chromosome, the correct segregation of which is crucial for both vegetative growth and sporulation. The proper completion of life cycle requires each daughter cell to obtain identical genetic information. The consequences of inaccurate chromosome segregation can lead to formation of anucleate cells, cells with two chromosomes, or cells with incomplete chromosomes. Although bacteria miss the classical eukaryotic mitotic apparatus, the chromosome segregation is undeniably an active process tightly connected to other cell processes as DNA replication and compaction. To fully understand the chromosome segregation, it is necessary to study this process in a wider context and to examine the role of different proteins at various cell life cycle stages. The life cycle ofB. subtilis is characteristic by its specific cell differentiation process where, two slightly different segregation mechanisms exist, specialized in vegetative growth and in sporulation.



remodeling and anchoring of the chromosome


structural maintenance of chromosome


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams D.E., Shekhtman E.M., Zechiedrich E.L., Schmid M.B., Cozzarelli N.R.: The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication.Cell 71, 277–288 (1992).PubMedCrossRefGoogle Scholar
  2. Arigoni F., Guérout-Fleury A.M., Barák I., Stragier P.: The SpoIIE phosphatase, the sporulation septum, and the establishment of forespore-specific transcription inBacillus subtilis: a reassessment.Mol.Microbiol. 31, 1407–1414 (1999).PubMedCrossRefGoogle Scholar
  3. Autret S., Nair R., Errington J.: Genetic analysis of the chromosome segregation protein Spo0J ofBacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein.Mol.Microbiol. 41, 743–755 (2001).PubMedCrossRefGoogle Scholar
  4. Autret S., Errington J.: A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein inBacillus subtilis.Mol.Microbiol. 47, 159–169 (2003).PubMedCrossRefGoogle Scholar
  5. Baldus J.M., Green B.D., Youngmann P., Moran C.P.: Phosphorylation ofBacillus subtilis transcription factor Spo0A stimulates transcription fromSpoIIG promoter by enhancing binding to weak 0A boxes.J.Bacteriol. 176, 296–306 (1994).PubMedGoogle Scholar
  6. Bath J., Wu L.J., Errington J., Wang J.C.: Role ofBacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum.Science 290, 995–997 (2000).PubMedCrossRefGoogle Scholar
  7. Ben-Yehuda S., Rudner D.Z., Losick R.: RacA, a bacterial protein that anchors chromosomes to the cell poles.Science 299, 532–536 (2003).PubMedCrossRefGoogle Scholar
  8. Ben-Yehuda S., Fujita M., Liu X.S., Gorbatyuk B., Skoko D., Yan J., Marko J.F., Liu J.S., Eichenberger P., Rudner D.Z., Losick R.: Defining a centromere-like element inBacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA.Mol.Cell 17, 773–782 (2005).PubMedCrossRefGoogle Scholar
  9. Bylund J.E., Haines M.A., Piggot P.J., Higgins M.L.: Axial filament formation inBacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase.J.Bacteriol. 175, 1886–1890 (1993).PubMedGoogle Scholar
  10. Cervin M.A., Spiegelman G.B., Raether B., Ohlsen K., Perego M., Hoch J.A.: A negative regulator linking chromosome segregation to developmental transcription inBacillus subtilis.Mol.Microbiol. 29, 85–89 (1998).PubMedCrossRefGoogle Scholar
  11. Cha J.H., Stewart G.C.: The divIVA minicell locus ofBacillus subtilis.J.Bacteriol. 179, 1671–1683 (1997).PubMedGoogle Scholar
  12. Dame R.T.: The role of nucleoid-associated proteins in the organization and compaction of bacterial chromation.Mol.Microbiol. 56, 858–870 (2005).PubMedCrossRefGoogle Scholar
  13. Defeu Soufo H.J., Graumann P.L.: Actin-like proteins MreB and Mbl fromBacillus subtilis are required for bipolar positioning of replication origins.Curr.Biol. 13, 1916–1920 (2003).CrossRefGoogle Scholar
  14. Defeu Soufo H.J., Graumann P.L.: Dynamic movement of actin-like proteins within bacterial cells.EMBO Rep. 5, 789–794 (2004).PubMedCrossRefGoogle Scholar
  15. Draper G.C., Gober J.W.: Bacterial chromosome segregation.Ann.Rev.Microbiol. 56, 567–597 (2002).CrossRefGoogle Scholar
  16. Dworkin J., Losick R.: Does RNA polymerase help drive chromosome segregation in bacteria?Proc.Nat.Acad.Sci.USA 99, 14089–14094 (2002).PubMedCrossRefGoogle Scholar
  17. Edwards D.H., Errington J.: TheBacillus subtilis DivIVA protein targets to the division septum and controls site specificity of cell division.Mol.Microbiol. 24, 905–915 (1997).PubMedCrossRefGoogle Scholar
  18. Edwards D.H., Thomaides H.B., Errington J.: Promiscuous targeting ofBacillus subtilis cell division protein DivIVA to division sites inEscherichia coli and fission yeast.EMBO J. 19, 2719–2727 (2000).PubMedCrossRefGoogle Scholar
  19. Espeli O., Lee C., Marians K.J.: A physical and functional interaction betweenEscherichia coli FtsK and topoisomerase IV.J.Biol.Chem. 278, 44639–44644 (2003).PubMedCrossRefGoogle Scholar
  20. Fadda D., Pischedda C., Caldara F., Whalen M.B., Anderluzzi D., Domenici E., Massidda O.: Characterization ofdivIVA and other genes located in the chromosomal region downstream of the dcw cluster inStreptococcus pneumoniae.J.Bacteriol. 185, 6209–6214 (2003).PubMedCrossRefGoogle Scholar
  21. Flärdh K.: Essential role of DivIVA in polar growth and morphogenesis inStreptomyces coelicolor A3(2).Mol.Microbiol. 49, 1523–1536 (2003).PubMedCrossRefGoogle Scholar
  22. Frandsen N., Barák I., Karmazyn-Campelli C., Stragier P.: Transient gene asymmetry during sporulation and establishment of cell specificity inBacillus subtilis.Genes Dev. 13, 394–399 (1999).PubMedCrossRefGoogle Scholar
  23. Gerdes K., Moller-Jensen J., Bugge Jensen R.: Plasmid and chromosome portioning: surprises from phylogeny.Mol.Microbiol. 37, 455–466 (2000).PubMedCrossRefGoogle Scholar
  24. Glaser P., Sharpe M.E., Raether B., Perego M., Ohlsen K., Errington J.: Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning.Genes Dev. 11, 1160–1168 (1997).PubMedCrossRefGoogle Scholar
  25. Gordon G.S., Wright A.: DNA segregation in bacteria.Ann.Rev.Microbiol. 54, 681–708 (2000).CrossRefGoogle Scholar
  26. Hilbert D.W., Chary V.K., Piggot P.J.: Contrasting effects of σE on compartmentalization of σF activity during sporulation ofBacillus subtilis.J.Bacteriol. 186, 1983–1990 (2004).PubMedCrossRefGoogle Scholar
  27. Hirano M., Hirano T.: Hinge-mediated dimerization of SMC proteins is essential or its dynamic interaction with DNA.EMBO J. 23, 2664–2673 (2006).CrossRefGoogle Scholar
  28. Hranueli D., Piggot P.J., Mandelstam J.: Statistical estimate of the total number of operons specific forBacillus subtilis sporulation.J.Bacteriol. 119, 684–690 (1974).PubMedGoogle Scholar
  29. Ireton K., Gunther N.W., Grossman A.D.: Spo0J is required for normal chromosome segregation as well as the initiation of sporulation inBacillus subtilis.J.Bacteriol. 176, 5320–5329 (1994).PubMedGoogle Scholar
  30. Jacob F., Brenner S., Cuzin F.: On the regulation of DNA replication in bacteria.Cold Spring Harbor Quant.Biol. 23, 329–348 (1963).Google Scholar
  31. Lee P.S., Lin D.C.-H., Moriya S., Grossman A.D.: Effects of the chromosome partioning protein Spo0J (ParB) onoriC positioning and replication initiation inBacillus subtilis.J.Bacteriol. 185, 1326–1337 (2003).PubMedCrossRefGoogle Scholar
  32. Lee P.S., Grossman A.D.: The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation inBacillus subtilis.Mo.Microbiol. 60, 853–869 (2006).CrossRefGoogle Scholar
  33. Lemon K.P., Grossman A.D.: Localization of bacterial DNA polymerase: evidence for a factory model of replication.Science 282, 1516–1519 (1998).PubMedCrossRefGoogle Scholar
  34. Lemon K.P., Grossman A.D.: Movement of replicating DNA through a stationary replisome.Mol.Cell 6, 1321–1330 (2000).PubMedCrossRefGoogle Scholar
  35. Lewis P.J., Errington J.: Direct evidence for active segregation oforiC regions of theBacillus subtilis chromosome and co-localization with the Spo0J partitioning protein.Mol.Microbiol. 25, 945–954 (1997).PubMedCrossRefGoogle Scholar
  36. Lin D.C.-H., Levin P.A., Grossman A.D.: Bipolar localization of a chromosome partition protein inBacillus subtilis.Proc.Nat.Acad.Sci.USA 94, 4721–4726 (1997).PubMedCrossRefGoogle Scholar
  37. Lin D.C.-H., Grossman A.D.: Identification and characterization of a bacterial chromosome partitioning site.Cell 92, 675–685 (1998).PubMedCrossRefGoogle Scholar
  38. Liu L.N.-J., Dutton R.J., Pogliano K.: Evidence that the SpoIIIE DNA translocase participates in membrane fusion during cytokinesis and engulfment.Mol.Microbiol. 59, 1097–1113 (2006).PubMedCrossRefGoogle Scholar
  39. Marston A.L., Thomaides H.B., Edwards D.H., Sharpe M.E., Errington J.: Polar localization of the MinD protein ofBacillus subtilis and its role in selection of the mid-cell division site.Genes Dev. 12, 3419–3430 (1998).PubMedCrossRefGoogle Scholar
  40. Marston A.L., Errington J.: Dynamic movement of the ParA-like Soj protein ofB. subtilis and its dual role in nucleoid organization and developmental regulation.Mol.Cell 4, 673–682 (1999a).PubMedCrossRefGoogle Scholar
  41. Marston A.L., Errington J.: Selection of the mid-cell division site inBacillus subtilis through MinD-dependent polar localization and activation of MinC.Mol.Microbiol. 33, 84–96 (1999b).PubMedCrossRefGoogle Scholar
  42. Melby T.E., Ciampaglio C.N., Briscoe G., Erickson H.P.: The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge.J.Cell.Biol. 142, 1595–1604 (1998).PubMedCrossRefGoogle Scholar
  43. Nordström K., Austin S.J.: Mechanisms that contribute to the stable segregation of plasmids.Ann.Rev.Genet. 23, 37–69 (1989).PubMedCrossRefGoogle Scholar
  44. Ogura Y., Ogasawara N., Harry E.J., Moriya S.: Increasing the ratio of Soj to Spo0J promotes replication initiation inBacillus subtilis.J.Bacteriol. 185, 6316–6324 (2003).PubMedCrossRefGoogle Scholar
  45. Pinho M.G., Errington J.: AdivIVA null mutant ofStaphylococcus aureus undergoes normal cell division.FEMS Microbiol.Lett. 240, 145–149 (2004).PubMedCrossRefGoogle Scholar
  46. Pogliano K., Hofmeister A.E., Losick R.: Disappearance of the σE transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation inBacillus subtilis.J.Bacteriol. 179, 3331–3341 (1997).PubMedGoogle Scholar
  47. Quisel J.D., Lin D.C.-H., Grossman A.D.: Control of development by altered localization of a transcription factor inBacillus subtilis.Mol.Cell 4, 665–672 (1999).PubMedCrossRefGoogle Scholar
  48. Quisel J.D., Grossman A.D.: Control of sporulation gene expression inBacillus subtilis by chromosome portioning proteins Soj (ParA) and Spo0J (ParB).J.Bacteriol. 182, 3446–3451 (2000).PubMedCrossRefGoogle Scholar
  49. Ramirez-Arcos S., Liao M., Marthaler S., Rigden M., Dillon J.A.:Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation.Microbiology 151, 1381–1393 (2005).PubMedCrossRefGoogle Scholar
  50. Ramos A., Honrubia M.P., Valbuena N., Vaquera J., Mateos L.M., Gil J.A.: Involvement of DivIVA in the morphology of the rod-shaped actinomyceteBrevibacterium lactofermentum.Microbiology 149, 3531–3542 (2003).PubMedCrossRefGoogle Scholar
  51. Reeve J.N., Mendelson N.H., Coyne S.I., Hallock L.L., Cole R.M.: Minicells ofBacillus subtilis.J.Bacteriol. 114, 860–873 (1973).PubMedGoogle Scholar
  52. Ryter A.: Morphologic study of the sporulation ofBacillus subtilis.Ann.Inst.Pasteur (Paris) 108, 40–60 (1965).Google Scholar
  53. Ryter A., Bloom B., Aubert J.P.: Intracellular localization ribonucleic acids synthesized during sporulation inBacillus subtilis.C.R.Acad.Sci.Hebd.Séances Acad.Sci.D 262, 1305–1307 (1966).PubMedGoogle Scholar
  54. Ryter A., Hirota Y., Jacob F.: DNA-membrane complex and nuclear segregation in bacteria.Cold Spring Harbor Symp.Quant.Biol. 33, 669–676 (1968).PubMedGoogle Scholar
  55. Satola S., Kirchman P.A., Moran C.P. Jr.: Spo0A binds to a promoter used by σA RNA polymerase during sporulation inBacillus subtilis.Proc.Nat.Acad.Sci.USA 88, 4533–4537 (1991).PubMedCrossRefGoogle Scholar
  56. Sharp M.D., Pogliano K.: Anin vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment duringBacillus subtilis sporulation.Proc.Nat.Acad.Sci.USA 96, 14553–14558 (1999).PubMedCrossRefGoogle Scholar
  57. Sharp M.D., Pogliano K.: Role of cell-specific SpoIIIE assembly in polarity of DNA transfer.Science 295, 137–139 (2002a).PubMedCrossRefGoogle Scholar
  58. Sharp M.D., Pogliano K.: MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer.EMBO J. 21, 6267–6274 (2002b).PubMedCrossRefGoogle Scholar
  59. Sharp M.D., Pogliano K.: The membrane domain of SpoIIIE is required for membrane fusion duringBacillus subtilis sporulation.J.Bacteriol. 185, 2005–2008 (2003).PubMedCrossRefGoogle Scholar
  60. Sharpe M.E., Errington J.: TheBacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning.Mol.Microbiol. 21, 501–509 (1996).PubMedCrossRefGoogle Scholar
  61. Teleman A.A., Graumann P.L., Chi-Hong Lin D., Grossman A.D., Losick R.: Chromosome arrangement within a bacterium.Curr.Biol. 8, 1102–1109 (1998)PubMedCrossRefGoogle Scholar
  62. Thomaides H.B., Freeman M., El Karoui M., Errington J.: Division-site-selection protein DivIVA ofBacillus subtilis has a second distinct function in chromosome segregation during sporulation.Genes Dev. 15, 1662–1673 (2001).PubMedCrossRefGoogle Scholar
  63. Trach K., Burbulys D., Strauch M., Wu J.J., Dhillon N., Jonas R., Hanstein C., Kallio P., Perego M., Bird T., Spiegelman G., Fogher C., Hoch J.A.: Control of the initiation of sporulation inBacillus subtilis by phosphorelay.Res.Microbiol. 142, 815–823 (1991).PubMedCrossRefGoogle Scholar
  64. Webb C.D., Teleman A., Gordon S., Straight A., Belmont A., Lin D.C., Grossman A.D., Wright A., Losick R.: Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells ofB. subtilis.Cell 88, 667–674 (1997).PubMedCrossRefGoogle Scholar
  65. Webb C.D., Graumann P.L., Kahana J.A., Teleman A.A., Silver P.A., Losick R.: Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle inBacillus subtilis.Mol.Microbiol. 28, 883–892 (1998).PubMedCrossRefGoogle Scholar
  66. Williams D.R., Thomas C.M.: Active portioning of bacterial plasmids.J.Gen.Microbiol. 138, 1–16 (1992).PubMedGoogle Scholar
  67. Woldringh C.L.: The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation.Mol.Microbiol. 45, 17–29 (2002).PubMedCrossRefGoogle Scholar
  68. Wu H.Y., Shyy S.H., Wang J.C., Liu L.F.: Transcription generates positively and negatively supercoiled domains in the template.Cell 53, 433–440 (1988).PubMedCrossRefGoogle Scholar
  69. Wu J.J., Piggot P.J., Tatti K.M., Moran C.P.: Transcription of theBacillus subtilis spoIIA locus.Gene 101, 113–116 (1991).PubMedCrossRefGoogle Scholar
  70. Wu L.J., Errington J.:Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division.Science 264, 572–575 (1994).PubMedCrossRefGoogle Scholar
  71. Wu L.J., Lewis P.J., Allmansberger R., Hauser P.M., Errington J.: A conjugation-like mechanism for prespore chromosome partitioning during sporulation inBacillus subtilis.Genes Dev. 9, 1306–1326 (1995).Google Scholar
  72. Wu L.J., Errington J.: Septal localization of the SpoIIIE chromosome partitioning protein inBacillus subtilis.EMBO J. 16, 2161–2169 (1997).PubMedCrossRefGoogle Scholar
  73. Wu L.J., Errington J.: Use of asymmetric cell division andspoIIIE mutants to probe chromosome orientation and organization inBacillus subtilis.Mol.Microbiol. 27, 777–786 (1998).PubMedCrossRefGoogle Scholar
  74. Wu L.J., Errington J.: RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulatingBacillus subtilis.Mol.Microbiol. 49, 1463–1475 (2003).PubMedCrossRefGoogle Scholar
  75. York K., Kenney T.J., Satola S., Moran C.P. Jr.,Poth H., Youngman P.: Spo0A controls the σA-dependent activation ofBacillus subtilis sporulation-specific transcription unitspoIIE.J.Bacteriol. 174, 2648–2458 (1992).PubMedGoogle Scholar
  76. Zhang W., Carneiro M.J.V.M., Turner I.J., Allen S., Roberts C.J., Soultanas P.: TheBacillus subtilis DnaD and DnaB proteins exhibit different DNA remodeling activities.J.Mol.Biol. 351, 66–75 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  1. 1.Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations