Folia Microbiologica

, Volume 51, Issue 3, pp 196–202 | Cite as

Immunity to killer toxin K1 is connected with the golgi-to-vacuole protein degradation pathway

  • K. Vališ
  • T. Mašek
  • D. Novotná
  • M. Pospišek
  • B. Janderová


Killer strains ofSaccharomyces cerevisiae producing killer toxin K1 kill sensitive cells but are resistant to their own toxin. It is assumed that in the producer, an effective interaction between the external toxin and its plasma membrane receptor or the final effector is not possible on the grounds of a conformation change of the receptor or its absence in a membrane. Therefore, it is possible that some mutants with defects in intracellular protein transport and degradation can show a suicidal phenotype during K1 toxin production. We have examined these mutants in a collection ofS. cerevisiae strains with deletions in various genes transformed by the pYX213+M1 vector carrying cDNA coding for the K1 toxin under the control of theGAL1 promoter. Determination of the quantity of dead cells in colony population showed that (1) the toxin production from the vector did not support full immunity of producing cells, (2) the suicidal phenotype was not connected with a defect in endocytosis or autophagy, (3) deletants in genesVPS1, VPS23, VPS51 andVAC8 required for the protein degradation pathway between the Golgi body and the vacuole exhibited the highest mortality. These results suggest that interacting molecule(s) on the plasma membrane in the producer might be diverted from the secretion pathway to degradation in the vacuole.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed A., Sesti F., Ilan N., Shih T.M., Sturley S.L., Goldstein S.A.N.: A molecular target for viral killer toxin: TOK1 potassium channels.Cell99, 283–291 (1999).PubMedCrossRefGoogle Scholar
  2. Bevan E.A., Makover M.: The physiological basis of the killer character in yeast.Proc. XIth Internat. Congr. Genetics1, 127 (1963).Google Scholar
  3. Blonel M.O., Morvan J., Dupre S., Urban-Grimal D., Haguenauer-tsapis R., Volland C.: Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation.Mol.Biol.Cell15, 883–895 (2004).CrossRefGoogle Scholar
  4. Boone C., Bussey H., Greene D., Thomas D.Y., Vernet T.: Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component.Cell46, 105–113 (1986).PubMedCrossRefGoogle Scholar
  5. Bostian K.A., Bussey H., Elliot Q., Burn V., Schmitt A., Tipper D.J.: Seguence of the preprotoxin of type 1 killer yeast: multiple processing events produce a two component toxin.Cell36, 741–751 (1984).PubMedCrossRefGoogle Scholar
  6. Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J., Hieter P., Boeke J.D.: Designer deletion strains derived fromSaccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications.Yeast14, 115–132 (1998).PubMedCrossRefGoogle Scholar
  7. Breinig F., Tipper D.J., Schmitt M.J.: Krelp, the plasma membrane receptor for the yeast K1 viral toxin.Cell108, 395–405 (2002).PubMedCrossRefGoogle Scholar
  8. Bussey H.: K1 killer toxin, a pore forming protein from yeast.Mol.Microbiol.5, 2339–2343 (1991).PubMedCrossRefGoogle Scholar
  9. Bussey H., Sherman D., Somers J.M.: Action of yeast killer factor: a resistant mutant with sensitive spheroplasts.J.Bacteriol.113, 1193–1197 (1973).PubMedGoogle Scholar
  10. Conibear E., Stevens T.H.: Vacuolar biogenesis in yeast: sorting out the sorting proteins.Cell83, 513–516 (1995).PubMedCrossRefGoogle Scholar
  11. Conibear E., Cleck J.N., Stevens T.H.: Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p.Mol.Biol.Cell14, 1610–1623 (2003).PubMedCrossRefGoogle Scholar
  12. Davis N.G., Horecka J.L., Sprague G.F. Jr.: Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors.J.Cell.Biol.122, 53–65 (1993).PubMedCrossRefGoogle Scholar
  13. De Craene J.O., Soetens O., Andre B.: The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease.J.Biol.Chem.276, 43939–43948 (2001).PubMedCrossRefGoogle Scholar
  14. Douglas C.M., Sturley S.L., Bostian K.A.: Role of protein processing, intracellular trafficking and endocytosis in production of and immunity to yeast killer toxin.Eur.J.Epidemiol.4, 400–408 (1988).PubMedCrossRefGoogle Scholar
  15. Flegelová H., Novotná D., Vojtíšková K., Janderová B.: Isolation and characterization ofSaccharomyces cerevisiae mutants with different degree of resistance to killer toxins K1 and K2.FEMS Yeast Res.2, 73–79 (2002).PubMedCrossRefGoogle Scholar
  16. Geli M.I., Riezman H.: Role of type I myosins in receptor-mediated endocytosis in yeast.Science272, 533–535 (1996).PubMedCrossRefGoogle Scholar
  17. Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A.: Studies on the transformation of intact yeast cells by the LiAc/ssDNA/PEG procedure.Yeast11, 355–360 (1995).PubMedCrossRefGoogle Scholar
  18. Givan S.A., Sprague G.F. Jr.: The ankyrin repeat-containing protein Akr1p is required for the endocytosis of yeast pheromone receptors.Mol.Biol.Cell8, 1317–1327 (1997).PubMedGoogle Scholar
  19. Horak J., Wolf D.H.: Catabolite inactivation of the galactose transporter in the yeastSaccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole.J.Bacteriol.179, 1541–1549 (1997).PubMedGoogle Scholar
  20. Li Y., Kane T., Tipper C., Spatrik P., Jenness D.D.: Yeast mutants affecting possible quality control of plasma membrane proteins.Mol.Cell.Biol.19, 3588–3599 (1999).PubMedGoogle Scholar
  21. Magliani W., Conti S., Gerloni M., Bertolotti D., Polonelli L.: Yeast killer systems.Clin.Microbiol.Rev.10, 369–400 (1997).PubMedGoogle Scholar
  22. Maraz A., Ferenczy L.: Mating type independent protoplast fusion inSaccharomyces cerevisiae, pp. 35–45 in J.F. Peberdy (Ed.):Protoplast Application in Microbial Genetics. University of Notingham, England 1979.Google Scholar
  23. Martinac B., Zhu H., Kubalski A., Zhou X., Culbertson M., Bussey H., Kung C.: Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes.Proc.Nat.Acad.Sci.USA87, 6228–6232 (1990).PubMedCrossRefGoogle Scholar
  24. Meškauskas A., Čivitavičius D.: The K2-type killer toxin- and immunity-encoding region fromSaccharomyces cerevisiae: structure and expression in yeast.Gene111, 135–139 (1992).PubMedCrossRefGoogle Scholar
  25. Novotná D., Flegelová H., Janderová B.: Different action of killer toxins K1 and K2 on the plasma membrane and the cell wall ofSaccharomyces cerevisiae.FEMS Yeast Res.4, 803–813 (2004).PubMedCrossRefGoogle Scholar
  26. Otte S., Belden W.J., Heidtman M., Liu J., Jensen O.N., Barlowe C.: Erv41 and Erv46: new components of COPII vesicles involved in transport between the ER and Golgi complex.J.Cell.Biol.152, 503–518 (2001).PubMedCrossRefGoogle Scholar
  27. Page N., Gerard-Vincent M., Menard P., Beaulieu M., Azuma M., Dikgraaf G.J., Li H., Marcoux J., Nguyen T., Dowse T., Sdicu A.M., Bussey H.: ASaccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin.Genetics63, 875–894 (2003).Google Scholar
  28. de la Peña P., Barros F., Gascón S., Lazo P.S.: Primary effects of yeast killer toxin.Biochem.Biosci.Res.Com.96, 544–550 (1980).CrossRefGoogle Scholar
  29. de la Peña P., Barros F., Gascon S., Lazo P.S., Ramos S.: Effect of yeast killer toxin on sensitive cells ofSaccharomyces cerevisiae.J.Biol.Chem.256, 10420–10425 (1981).PubMedGoogle Scholar
  30. Scott S.V., Nice D.C. 3rd,Nau J.J., Weisman L.S., Kamada Y., Keizer-Gunnink I., Funakoshi T., Veenhuis M., Ohsumi Y., Klionsky D.J.: Apg13 and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting.J.Biol.Chem.275, 25840–25849 (2000).PubMedCrossRefGoogle Scholar
  31. Skipper N., Thomas D.Y., Lau P.C.K.: Cloning and sequencing of the preprotoxin-coding region of the yeast M1 double-stranded RNA.EMBO J.3, 107–111 (1984).PubMedGoogle Scholar
  32. Sturley S.L., Elliot Q.E., Le Vitre J., Tipper D.J., Bostian K.A.: Mapping of functional domains within the type 1 killer preprotoxin.EMBO J.5, 3381–3389 (1986).PubMedGoogle Scholar
  33. Tipper D.J., Bostian K.A.: double-stranded ribonucleic acid killer systems in yeasts.Microbiol.Rev.48, 125–156 (1984).PubMedGoogle Scholar
  34. Tipper D.J., Schmitt M.J.: Yeast dsRNA viruses: replication and killer phenotypes.Mol.Microbiol.5, 2331–2338 (1991).PubMedCrossRefGoogle Scholar
  35. Woods D.R., Bevan E.A.: Studies on the nature of killer factor produced bySaccharomyces cerevisiae.J.Gen.Microbiol.51, 115–126 (1968).PubMedGoogle Scholar
  36. Young T.W.: Killer yeasts. pp. 131–164 in A.H. Rose, J.S. Harrison (Eds):The Yeasts, Vol. 2. Academic Press, London 1987.Google Scholar
  37. Zhu H., Bussey H.: Mutational analysis of the functional domains of yeast K1 killer toxin.Mol.Cell.Biol.11, 175–181 (1991).PubMedGoogle Scholar
  38. Zhu H., Bussey H., Thomas D.Y., Gagnon J., Bell A.W.: Determination of the carboxyl termini of the α and β subunits of yeast K1 killer toxin.J.Biol.Chem.262, 10728–10732 (1987).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • K. Vališ
    • 1
  • T. Mašek
    • 1
  • D. Novotná
    • 1
  • M. Pospišek
    • 1
  • B. Janderová
    • 1
  1. 1.Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzechia

Personalised recommendations