Folia Microbiologica

, Volume 52, Issue 5, pp 451–456 | Cite as

Glucosylglycerate is an osmotic solute and an extracellular metabolite produced byStreptomyces caelestis

  • S. Pospíšil
  • P. Halada
  • M. Petříček
  • P. Sedmera


Streptomyces caelestis DSM 40084produces two osmolytes,viz. 2-O-(α-d-glucopyranosyl)-ζ-glyceric acid (GG) and trehalose. Both compounds were isolated and identified by nuclear magnetic resonance spectroscopy and mass spectrometry. A very sensitive regulation of the cell osmolytes was demonstrated in exponentially growing cultures. The intracellular levels of GG and trehalose increased 2× in response to a step change of medium osmolarity caused by 0.3 % NaCl.1H NMR analysis of the cell extracts did not confirm the presence of additional osmolytes. GG is aS. caelestis metabolite commonly released from the cells; its concentration reached 3 g/L during the cultivation in a yeast extract-(NH4)2SO4-glycerol medium. This is the first report on the occurrence of the ionic osmolyte GG in the genusStreptomyces and on its free excretion to the medium.


Streptomyces Trehalose Fermentation Broth Compatible Solute Ergot Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



one-dimensional total-correlated spectroscopy


chemically defined (medium)


electrospray ionization mass spectrometry


2-O-(α-d-glucopyranosyl)-ξ-glyceric acid


heteronuclear multiple bond correlation


mass spectrometry


NMR spectroscopy


complex (medium)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarico S., Empadinhas N., Simöes C., Silva Z., Henne A., Mingote A., Santos H., da Costa M.S.: Distribution of genes for the synthesis of trehalose and mannosylglycerate inThermus spp. and direct correlation with halotolerance.Appl.Environ.Microbiol. 71, 2460–2466 (2005).PubMedCrossRefGoogle Scholar
  2. Argoudelis A.D., Brodasky T.F.: Studies withStreptomyces caelestis. I. New celesticetins.J.Antibiot. 25, 194–196 (1972).PubMedGoogle Scholar
  3. Cánovas D., Borges N., Vargas C., Ventosa A., Nieto J.J., Santos H.: Role ofN-γ-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine.Appl.Environ.Microbiol. 65, 3774–3779 (1999).PubMedGoogle Scholar
  4. Costa J., Empadinhas N., Goncalves L., Lamosa P., Santos H., da Costa M.S.: Characterization of the biosynthetic pathway of glucosylglycerate in the archaeonMethanococcoides burtonii.J.Bacteriol. 188, 1022–1030 (2006).PubMedCrossRefGoogle Scholar
  5. da Costa M.S., Santos H., Galinski E.A.: An overview of the role and diversity of compatible solutes inBacteria andArchaea.Adv.Biochem.Eng.Biotechnol. 61, 117–153 (1998).PubMedGoogle Scholar
  6. Duus J.Ø., Gotfredsen C.H., Bock K.: Carbohydrate structural determination by NMR spectroscopy. Modern methods and limitations.Chem.Rev. 100, 4589–4614 (2000).PubMedCrossRefGoogle Scholar
  7. Elbein A.D., Pan Y.T., Pastuszak I., Carroll D.: New insights on trehalose: a multifunctional molecule.Glycobiology 13, 17R-27R (2003).PubMedCrossRefGoogle Scholar
  8. Goude R., Renaud S., Bonnassie S., Bernard T., Blanco C.: Glutamine, glutamate, and α-glucosylglycerate are the major osmotic solutes accumulated byErwinia chrysanthemi strain 3937.Appl.Environ.Microbiol. 70, 6535–6541 (2004).PubMedCrossRefGoogle Scholar
  9. Killham K., Firestone M.K.: Salt stress control of intracellular solutes in streptomycetes indigenous to saline soils.Appl.Environ.Microbiol 47, 301–306 (1984).PubMedGoogle Scholar
  10. Kollman V.H., Hanners J.L., London R.E., Adame E.G., Walker T.E.: Photosynthetic preparation and characterization of13C-labeled carbohydrates inAgmenellum quadruplicatum.Carbohydr.Res. 73, 193–202 (1979).CrossRefGoogle Scholar
  11. Křen V., Sedmera P., Havlíęk V., Fišerová A.: Enzymatic galactosylation of ergot alkaloids.Tetrahedron Lett. 33, 7233–7236 (1992).CrossRefGoogle Scholar
  12. Malin G., Lapidot A.: Induction of synthesis of tetrahydropyrimidine derivatives inStreptomyces strains and their effect onEscherichia coli in response to osmotic and heat stress.J.Bacteriol. 178, 385–395 (1996).PubMedCrossRefGoogle Scholar
  13. Poolman B., Blount P., Folgering J.H.A., Friesen R.H.E., Moe P.C., van der Heide T.: How do membrane proteins sense water stress?Mol.Microbiol. 44, 889–902 (2002).PubMedCrossRefGoogle Scholar
  14. Pospíšil S., Sedmera P., Halada P., Spížek J.: Oxidation of lincomycin by hydrogen peroxide restricts its potential biotransformation with haloperoxidases.Folia Microbiol. 46, 376–378 (2001).CrossRefGoogle Scholar
  15. Pospíšil S., Sedmera P., Halada P., Petříček M.: Extracellular carbohydrate metabolites fromStreptomyces coelicolor A3(2).J.Nat.Prod. 70, 768–771 (2007).PubMedCrossRefGoogle Scholar
  16. Robertson D.E., Lai M., Gunsalus R.P., Roberts M.F.: Composition, variation, and dynamics of major osmotic solutes inMethanohalophilus strain FDF1.Appl.Environ.Microbiol. 58, 2438–2443 (1992).PubMedGoogle Scholar
  17. Roder A., Hoffmann E., Hagemann M., Berg G.: Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells ofStenotrophomonas strains.FEMS Microbiol.Lett. 243, 219–226 (2005).PubMedCrossRefGoogle Scholar
  18. Uhrín D., Barlow P.N.: Gradient-enhanced one-dimensional proton chemical-shift correlation with full sensitivity.J.Magnet.Reson. 126, 248–255 (1997).CrossRefGoogle Scholar
  19. Zhang J., Reddy J., Buckland B., Greasham R.: Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process.Biotechnol.Bioeng. 82, 640–652 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • S. Pospíšil
    • 1
  • P. Halada
    • 1
  • M. Petříček
    • 1
  • P. Sedmera
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations