Biotechnology and Bioprocess Engineering

, Volume 10, Issue 3, pp 254–261 | Cite as

Bcl-2 over-expression reduced the serum dependency and improved the nutrient metabolism in a NS0 cells culture



The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The μmax andKs for the Bcl-2 cell line is 0.927 day−1 and 0.947% (v/v) respectively, which are 21% greater and 7% lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a 17% decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EAA suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.


apoptosis bcl-2 NS0 cells serum essential amino acid specific growth rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Renner, W. A., K. H. Lee, V. Hatzimanikatis, J. E. Bailey, and H. M. Eppenberger (1995) Recombinant cyclin-E expression activates proliferation and obviates surface attachment of chinese hamster ovary (CHO) cells in protein-free medium.Biotechnol. Bioeng. 47: 476–482.CrossRefGoogle Scholar
  2. [2]
    Zanghi, I. A., M. Fussenegger, and J. E. Bailey (1999) Serum protects protein-free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture.Biotechnol. Bioeng. 64: 108–119.CrossRefGoogle Scholar
  3. [3]
    Tey, B. T., R. P. Singh, and M. Al-Rubeai (2001) Programmed cell death: An overview of apoptosis in cell culture.Asia Pac. J. Mol. Biol. Biotechnol. 9: 1–28.Google Scholar
  4. [4]
    Itoh, Y., H. Ueda, and E. Suzuki (1995) Over-expression of Bcl-2. apoptosis suppressing gene-prolonged viable culture period of hybridoma and enhanced antibody-production.Biotechnol. Bioeng. 48: 118–122.CrossRefGoogle Scholar
  5. [5]
    Simpson, N. H., A. E. Milner, and M. Al-Rubeai (1997) Prevention of hybridoma cell death by Bcl-2 during suboptimal culture conditions.Biotechnol. Bioeng. 54: 1–16.CrossRefGoogle Scholar
  6. [6]
    Tey, B. T., R. P. Singh, L. Piredda, M. Piacentini, and M. Al-Rubeai (2000) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures.J. Biotechnol. 79: 147–159.CrossRefGoogle Scholar
  7. [7]
    Goswami, J., A. J. Sinskey, H. Steller, G. N. Stephanopoulos, and D. I. C. Wang (1999) Apoptosis in batch cultures of Chinese hamster ovary cells.Biotechnol. Bioeng. 62: 632–640.CrossRefGoogle Scholar
  8. [8]
    Mastrangelo, A. J., J. M. Hardwick, F. Bex, and M. J. Betenbaugh (2000) Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors.Biotechnol. Bioeng. 67: 544–554.CrossRefGoogle Scholar
  9. [9]
    Tey, B. T., R. P. Singh, L. Piredda, M. Piacentini, and M. Al-Rubeai (2000) Influence of Bcl-2 on cell death during cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody.Biotechnol. Bioeng. 68: 31–43.CrossRefGoogle Scholar
  10. [10]
    Singh, R. P., M. Al-Rubeai, C. D. Gregory, and A. N. Emery (1994) Cell-death in bioreactors: A role for apoptosis.Biotechnol. Bioeng. 44: 720–726.CrossRefGoogle Scholar
  11. [11]
    Mercille, S. and B. Massie (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells.Biotechnol. Bioeng. 44: 1140–1154.CrossRefGoogle Scholar
  12. [12]
    Simpson, N. H., R. P. Singh, A. Perani, C. Goldenzon, and M. Al-Rubeai (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of thebcl-2 gene.Biotechnol. Bioeng. 59: 90–98.CrossRefGoogle Scholar
  13. [13]
    Bebbington, C. R. and C. G. Hentschel (1987) The use of vectors based on gene amplication for the expression of cloned genes in mammalian cells. pp. 163–187. In: D. M. Glover (ed.).DNA Cloning: A Practical Approach Vol. 3. IRL, Oxford, UK.Google Scholar
  14. [14]
    Leelavatcharamas, V. (1997)Growth, Gamma Interferon Production and Cell Cycle in Batch, Continuous and Perfusion Cultures. Ph.D. Thesis. University of Birmingham, UK.Google Scholar
  15. [15]
    Dalili, M. and D. F. Ollis (1989) Transient kinetics of hybridoma growth and monoclonal-antibody production in serum-limited cultures.Biotechnol. Bioeng. 33: 984–990.CrossRefGoogle Scholar
  16. [16]
    Leelavatcharamas, V., A. N. Emery, and M. Al-Rubeai (1994) Growth and interferon-gamma production in batch culture of CHO cells.Cytotechnology 15: 65–71.CrossRefGoogle Scholar
  17. [17]
    Singh, R. P., A. N. Emery, and M. Al-Rubeai (1996) Enhancement of survivability of mammalian cells by over-expression of the apoptosis-suppressor genebcl-2.Biotechnol. Bioeng. 52: 166–175.CrossRefGoogle Scholar
  18. [18]
    Fassnacht, D., S. Rossing, F. Franek, M. Al-Rubeai, and R. Portner (1998) Effect of Bcl-2 expression on hybridoma cell growth in serum- supplemented, protein-free and diluted media.Cytotechnology 26: 219–225.CrossRefGoogle Scholar
  19. [19]
    Franek, F. and J. Dolnikova (1991) Nucleosomes occurring in protein-free hybridoma cell-culture: Evidence for programmed cell-death.FEBS Lett. 284: 285–287.CrossRefGoogle Scholar
  20. [20]
    Franek, F. (1995) Starvation-induced programmed death of hybridoma cells, prevention by amino-acid mixtures.Biotechnol. Bioeng. 45: 86–90.CrossRefGoogle Scholar
  21. [21]
    Ishaque, A. and M. Al-Rubeai (1999) Role of Ca, Mg and K ions in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture.Apoptosis 4: 335–355.CrossRefGoogle Scholar
  22. [22]
    Ishaqe, A. and M. Al-Rubeai (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture.Apoptosis 7: 231–239.CrossRefGoogle Scholar
  23. [23]
    Tey, B. T. and M. Al-Rubeai (2004) Suppression of apoptosis in perfusion culture of Myeloma NS0 cells enhances cell growth but reduces antibody productivity.Apoptosis 9: 843–852.CrossRefGoogle Scholar
  24. [24]
    Plas, D. R. and C. B. Thompson (2002) Cell metabolism in the regulation of programmed cell death.Trends Endocrin. Met. 13: 74–78.CrossRefGoogle Scholar
  25. [25]
    Susin, S. A., H. K. Lorenzo, N. Marzo, I. Zamzami, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger, and G. Kroemer (1999) Molecular characterization of mitochondrial apoptosis-inducing factor.Nature 397: 441–446.CrossRefGoogle Scholar
  26. [26]
    Al-Rubeai, M. (1998) Apoptosis and cell culture technology.Adv. Biochem. Eng. Biotechnol. 59: 226–249.Google Scholar
  27. [27]
    Xie, L. Z. and D. I. C. Wang (1996) Energy metabolism and ATP balance in animal cell cultivation using a stolchiometrically based reaction network.Biotechnol. Bioeng. 52: 591–601.CrossRefGoogle Scholar
  28. [28]
    Rabinovitz, M. (1992) The pleiotypic response to amino-acid deprivation is the result of interactions between components of the glycolysis and protein-synthesis pathways.FEBS Lett. 302: 113–116.CrossRefGoogle Scholar
  29. [29]
    Tey, B. T. and M. Al-Rubeai (2005) Effect of Bcl-2 over-expression on cell cycle and antibody productivity in chemostat cultures of myeloma NS0 cells.J. Biosci. Bioeng. (In Press).Google Scholar
  30. [30]
    Castagna, M., C. Shayakul, D. Trotti, V. F. Sacchi, W. R. Harvey, and M. A. Hediger (1997) Molecular characteristics of mammalian and insect amino acid transporters: Implications for amino acid homeostasis.J. Exp. Biol. 200: 269–286.Google Scholar
  31. [31]
    Franek, F. and K. ChladkovaSramkova (1995) Apoptosis and nutrition: Involvement of amino acid transport system in repression of hybridoma cell death.Cytotechnology 18: 113–117.CrossRefGoogle Scholar
  32. [32]
    Franek, F. and K. Sramkova (1996) Cell suicide in starving hybridoma culture: Survival-signal effect of some amino acids.Cytotechnology 21: 81–89.CrossRefGoogle Scholar
  33. [33]
    Franek, F. and K. Sramkova (1996) Protection of B lymphocyte hybridoma against starvation-induced apoptosis: Survival-signal role of some amino acids.Immunol. Lett. 52: 139–144.CrossRefGoogle Scholar
  34. [34]
    Kurita, T. and H. Namiki (1994) Apoptotic cell-death induced by serum and its prevention by thiols.J. Cell. Physiol. 161: 63–70.CrossRefGoogle Scholar
  35. [35]
    Ratan, R. R. and J. M. Baraban (1995) Apoptotic death in anin vitro model of neuronal oxidative stress.Clin. Exp. Pharmacol. Physiol. 22: 309–310.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdang, SelangorMalaysia
  2. 2.Department of Chemical and Biochemical EngineeringUniversity College DublinDublin 4Ireland

Personalised recommendations