Biotechnology and Bioprocess Engineering

, Volume 6, Issue 2, pp 107–111 | Cite as

Improved production of curdlan with concentrated cells ofAgrobacterium sp.

  • Dae-Young Jung
  • Young-Su Cho
  • Chung-Han Chung
  • Dai-Il Jung
  • Kwang Kim
  • Jin-Woo Lee
Article

Abstract

The addition of a limited concentration of yeast extract to a minimal salt medium (MSM) enhanced cell growth and increased the production of curdlan whereas nitrogenlimitation was found to be essential for the higher production of curdlan byAgrobacterium sp. ATCC 31749. As the amount of the inoculum increased, the cell growth as well as the production of curdlan also increased in the MSM without a nitrogen source. The cell growth and production of curdlan increased as the initial pH of the medium decreased as low as 5.0. The conversion rate and concentration of curdlan from 2% (w/v) glucose in the MSM with concentrated cells under nitrogen deletion was 67% and 13.4 g/L, respectively. The highest conversion rate of curdlan under the conditions optimized in this study was 71% when the glucose concentration was 1% (w/v).

Keywords

curdlan Agrobacterium sp. nitrogen depletion concentrated cells inoculum size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Harada, T., K. Fujimori, S. Hirose, and M. Masada (1966) Crowth and β-1,3 glucan 10C3K production by a mutant ofAlcaligenes faecalis var.myxogenes in defined medium.Agr. Biol. Chem. 30: 764–769.Google Scholar
  2. [2]
    Harada, T., A. Misaki, and H. Saito (1968) Curdlan: A bacterialgel-forming β-1,3-glucan.Arch. Biochem. 124: 292–298.CrossRefGoogle Scholar
  3. [3]
    Maeda, I., H. Saito, M. Masada, A. Misaki, and T. Harada (1967) Properties of gels formed by heat treatment of curdlan, a bacterial β-1,3 glucan.Agr. Biol. Chem. 31: 1184–1188.Google Scholar
  4. [4]
    Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlcaligenes faecalis var.myxogenes 10C3.Agr. Biol. Chem. 30: 196–198.Google Scholar
  5. [5]
    Ayers, S. H. and P. Rupp (1920) Extracts of pure dry yeast for culture media.J. Bacteriol. 5: 89–98.Google Scholar
  6. [6]
    Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of firm, resilient gel-forming polysaccharide in natural medium by a mutant ofAlcaligenes faecalis var.myxogenes 10C3.J. Ferment. Technol. 44: 20–24.Google Scholar
  7. [7]
    Phillips, K. R. and H. C. Lawford (1983) Curdlan: its properties and production in batch and continuous fermentation.Prog. Ind. Microbiol. 18: 201–229.Google Scholar
  8. [8]
    Lawford, H. G., K. R. Phillips, and G. R. Lawford (1982) A two stage continuous process for the production of thermogelable curdlan-type expolysaccharide.Biotechnol. Lett. 4: 689–694.CrossRefGoogle Scholar
  9. [9]
    Lee, I. Y., W. T. Seo, G. J. Kim, C. S. Park, and Y. H. Park (1997) Production of curdlan of using sucrose or sugar cane molasses by two-step fed-batch cultivation ofAgrobacterium species.J. Ind. Microbiol. Biotechnol. 18: 255–259.CrossRefGoogle Scholar
  10. [10]
    Seviour, R. J. and B. Kristiansen (1983) Effect of ammonium ion concentration on polysaccharide production byAureobasidium pullulans in batch culture.Eur. J. Appl. Microbiol. Biotechnol. 17: 178–181.CrossRefGoogle Scholar
  11. [11]
    Ko, S. H., H. S. Lee, S. H. Park, and H. K. Lee (2000) Optimal conditions for the production of exopolysaccharide by marine microorganismHahella chejuensis.Biotechnol. Bioprocess Eng. 5: 181–185.CrossRefGoogle Scholar
  12. [12]
    Orts, W. J., J. D. Rousseau, and H. G. Lawfor ((1987) Improved microbial production of curdlan type-polysaccharide. pp. 459–469. In: S. Stivala, V. Crescenzi, and I. C. M. Dea (eds.).Industrial Polysaccharides. Gordon Breach Science, New York, USA.Google Scholar
  13. [13]
    Phillips, K. R., J. Pik, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford (1983) Production of curdlantype polysaccharide byAlcaligenes faecalis in batch and continuous culture.Can. J. Microbiol. 29: 1331–1338.CrossRefGoogle Scholar
  14. [14]
    Lawford, H. G. (1982) Continuous process for the production of gelable exopolysaccharide.US Patent 4,355,106.Google Scholar
  15. [15]
    Lawford, H. G. and J. D. Rousseau (1992) Production of β-1,3-glucan exopolysaccharide in low shear systems.Appl. Biochem. Biotechnol. 34/35: 597–612.CrossRefGoogle Scholar
  16. [16]
    Lee, J. W., W. G. Yeomans, A. F. Allen, D. L. Kaplan, F. Deng, and R. A. Gross (1997) Exopolymers from curdlan production: incorporation of glucose-related sugars byAgrobacterium sp. strain ATCC 31749.Can. J. Microbiol. 43: 149–156.CrossRefGoogle Scholar
  17. [17]
    Lee, J. W., W. G. Yeomans, A. F. Allen, D. L. Kaplan, and R. A. Gross (1997) Microbial production of water-soluble non curdlan type exopolymer-B with controlled composition byAgrobacterium sp.Biotechnol. Lett. 19: 1217–1221.CrossRefGoogle Scholar
  18. [18]
    Chaplin, M. (1982) A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography.Anal. Biochem. 123: 336–341.CrossRefGoogle Scholar
  19. [19]
    Sharmila, M., K. Ramanans, and N. Sethunathan (1989) Effect of yeast extract on the degradation of organophosphorous insecticides by soil enrichment and bacterial cultures.Can. J. Microbiol. 35: 1105–1110.CrossRefGoogle Scholar
  20. [20]
    Shen, C. F., N. Kosaric, and R. Blaszezyk (1993) Properties of anaerobic sludge as affected by yeast extract, cobalt and iron suppleents.Appl. Microbiol. Biotechnol. 39: 132–137.Google Scholar
  21. [21]
    Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis inAgrobacterium species.Biotechnol. Bioeng. 62: 317–323.CrossRefGoogle Scholar
  22. [22]
    Ebbole, D. J. (1998) Carbon catabolite repression of gene expression and condition inNeurospora crassa.Fungal Gen. Biol. 25: 15–21.CrossRefGoogle Scholar
  23. [23]
    Anwar, M. N., M. Suto, and F. Tomita (1996) Isolation of mutants ofPenicillium purpurogen resistant to catabolite repression.Appl. Microbiol. Biotechnol. 45: 684–687.CrossRefGoogle Scholar
  24. [24]
    Wolff, J. A., C. H. MacGregor, R. C. Eisenberg, and P. V. Phibbs Jr. (1991) Isolation and characterization of catabolite repression control mutants ofPseudomonas acruginosa PAO.J. Bacteriol. 173: 4700–4706.Google Scholar
  25. [25]
    Gancedo, J. M. (1998) Yeast carbon catabolite repression.Microbiol. Mol. Biol. Rev. 62: 334–361.Google Scholar
  26. [26]
    Lee, I. Y., M. K. Kim, W. T. Lee, J. K. Seo, H. W. Jung, and Y. H. Park (1999) Influence of agitation speed on production of curdlan byAgrobacterium species.Bioproess Eng. 20: 283–287.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  • Dae-Young Jung
    • 1
  • Young-Su Cho
    • 1
  • Chung-Han Chung
    • 1
  • Dai-Il Jung
    • 2
  • Kwang Kim
    • 3
  • Jin-Woo Lee
    • 1
  1. 1.Division of Biotechnology, Faculty of Natural Resources and Life ScienceDong-A UniversityPusanKorea
  2. 2.Deperatment of Chemistry, College of Natural ScienceDong-A UniversityPusanKorea
  3. 3.Department of Chemical Engineering, College of EngineeringDong-A UniversityPusanKorea

Personalised recommendations