Effects of morphology and rheology on neofructosyltransferase production byPenicillium citrinum

  • Jung Soo Lim
  • Jong Ho Lee
  • Jung Mo Kim
  • Seung Won Park
  • Seung Wook Kim
Article
  • 84 Downloads

Abstract

In this study, we investigated the relationship between the morphology and the rheological properties ofPenicillium citrinum to improve the production of neo-fructosyltransferase (neo-FTase). In a 2.5 L bioreactor culture ofP. citrinum, it was observed that agitation speed and aeration rate had significant effects on the production of neo-FTase and that maximum cell mass and neo-FTase production obtained at 500 rpm and 1.5 vvm were 8.14 g/L and 53.2×10−3 U/mL, respectively. Cell mass and neo-FTase production increased to 91.53 and 25.17%, respectively. In the morphology and rheology studies,P. citrinum showed a typical pellet morphology that was explained by a shaving mechanism; this phenomenon was significantly affected by carbon sources. The rheology of neo-FTase fermentation byP. citrinum was dependent on cell growth and fungal morphology.

Keywords

neo-fructosyltransferase neo-fructooligosaccharide pellet morphology Penicillium citrinum rheology 

References

  1. [1]
    Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. seo, H. S. Lee, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose.Biotechnol. Bioprocess Eng. 9: 339–344.CrossRefGoogle Scholar
  2. [2]
    Hayashi, S., M. Nonokuchi, K. Imada, and H. Ueno (1990) Production of fructosyl-transferring enzyme byAureobasidium sp. ATCC 20524.J. Ind. Microbiol. 5: 395–400.CrossRefGoogle Scholar
  3. [3]
    Yun, J. W. (1996) Fructooligosaccharides-Occurrence, preparation, and application.Enzyme Microb. Technol. 19: 107–117.CrossRefGoogle Scholar
  4. [4]
    Jung, K. H., J. Y. Lim, S. J. Yoo, J. H. Lee, and M. Y. Yoo (1987) Production of fructosyltransferase fromAureobosidium pullulans.Biotechnol. Lett. 9: 703–708.CrossRefGoogle Scholar
  5. [5]
    Hayashi, S., Y. Shimokawa, M. Nogoguchi, Y. Tasasaki, H. Ueno, and K. Imada (1993) Nutritional status ofAureobasidium sp. ATCC 20524 for the production of β-fructofuranosidase.World J. Microbiol. Biotechnol. 9: 216–220.CrossRefGoogle Scholar
  6. [6]
    Choi, D. B., K. A. Cho, W. S. Cha, and S. R. Ryu (2004) Effect of Triton X-100 on compactin production fromPenicillium citrinum.Biotechnol. Bioprocess Eng. 9: 171–178.CrossRefGoogle Scholar
  7. [7]
    Jung, K. H., J. W. Yun, K. R. Kang, J. Y. Lim, and J. H. Lee (1989) Mathematical model for enzymatic production of fructooligosaccharides from sucrose.Enzyme Microb. Technol. 11: 491–494.CrossRefGoogle Scholar
  8. [8]
    Hang, Y., E. Woodams, and K. Jang (1995) Enzymatic conversion of sucrose to kestose by fungal extracellular fructosyltransferase.Biotechnol. Lett. 17: 295–298.CrossRefGoogle Scholar
  9. [9]
    Hirayama, M., N. Sumi, and H. Hidaka (1989) Purification and properties of a fructooligosaccharide-producing β-fructofuranosidase fromAspergillus niger ATCC 20611.Agric. Biol. Chem. 53: 667–673.Google Scholar
  10. [10]
    Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim (2001) Effects of nutrients and culture conditions on morphology in the seed culture ofCephalosporium acremonium ATCC 20339.Biotechnol. Bioprocess Eng. 6: 156–160.CrossRefGoogle Scholar
  11. [11]
    Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim (2002) Morphological and rheological properties of culture broth ofCephalosporium acremonium M25.Korea-Australia Rheology J. 14: 11–16.Google Scholar
  12. [12]
    Sinha, J., J. T. Bae, J. P. Park, C. H. Song, and J. W. Yun (2001) Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production byPaecilomyces japonica in a batch bioreactor.Enzyme Microb. Technol. 29: 392–399.CrossRefGoogle Scholar
  13. [13]
    Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture ofCephalosporium acremonium M25 using rice oil.Biotechnol. Bioprocess Eng. 9: 459–464.CrossRefGoogle Scholar
  14. [14]
    Jimenez-Tobon, G. A., M. J. Penninckx, and R. Lejeune (1997) The relationship between pellet size and production of Mn(II) peroxidase byPhanerochaete chrysosporium in submerged culture.Enzyme Microb. Technol. 21: 537–542.CrossRefGoogle Scholar
  15. [15]
    Yim, J. H., S. J. Kim, S. H. Aan, and H. K. Lee (2004) Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacteriumHahella chejuensis.biotechnol. Bioprocess Eng. 9: 405–413.CrossRefGoogle Scholar
  16. [16]
    Riley, G. L., K. G. Tucker, G. C. Paul, and C. R. Thomas (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology.Biotechnol. Bioeng. 68: 160–172.CrossRefGoogle Scholar
  17. [17]
    Tucker, K. G. and C. R. Thomas (1993) Effect of biomass concentration and morphology on the rheological parameters ofPenicillium chrysogenum fermentation broths.Trans. IchemE. Part C 71: 111–117.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2006

Authors and Affiliations

  • Jung Soo Lim
    • 1
  • Jong Ho Lee
    • 1
  • Jung Mo Kim
    • 1
  • Seung Won Park
    • 2
  • Seung Wook Kim
    • 1
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Food Ingredient Division, CJ Foods R&DCJ Corp.SeoulKorea

Personalised recommendations