Advertisement

Influences of cultural medium component on the production of poly(γ-glutamic acid) byBacillus sp. RKY3

  • Duk-Yeon Jung
  • Sunok Jung
  • Jong-Sun Yun
  • Jin-Nam Kim
  • Young-Jung Wee
  • Hong-Gi Jang
  • Hwa-Won RyuEmail author
Article

Abstract

In this study, the cultural medium used for the efficient production of γ-PGA with a newly isolatedBacillus sp. RKY3 was optimized. It was necessary to supplement the culture medium withl-glutamic acid and an additional carbon source in order to induce the effective production of γ-PGA. The amount of γ-PGA increased with the addition ofl-glutamic acid to the medium. The addition of 90 g/Ll-glutamic acid to the medium resulted in the maximal yield of γ-PGA (83.2 g/L). The optimum nitrogen source was determined to be peptone, but corn steep liquor, a cheap nutrient, was also found to be effective for γ-PGA production. Both the γ-PGA production and cell growth increased rapidly with the addition of small amounts of K2HPO4 and MgSO4·7H2O.Bacillus sp. RKY3 appears to require Mg2+, rather than Mn2+, for γ-PGA production, which is distinct from the production protocols associated with other, previously reported bacteria.Bacillus sp. RKY3 may also have contributed some minor γ-PGA depolymerase activity, resulting in the reduction of the molecular weight of the produced γ-PGA at the end of fermentation.

Keywords

Bacillus biodegradable polymer culture medium glutamic acid poly(γ-glutamic acid) 

References

  1. [1]
    Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid.Biotechnol. Bioprocess Eng. 9: 303–308.CrossRefGoogle Scholar
  2. [2]
    Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineeredEscherichia coli.Biotechnol. Bioprocess Eng. 9: 196–200.CrossRefGoogle Scholar
  3. [3]
    Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion ofG. hansenii PJK into non-cellulose-producing mutants according to the culture condition.Biotechnol. Bioprocess Eng. 9: 383–388.CrossRefGoogle Scholar
  4. [4]
    Ashiuchi, M., T. Kamei, and H. Misono (2003) Poly-γ-glutamate synthase ofBacillus subtilis.J. Mol. Cat. B. 23: 101–106.CrossRefGoogle Scholar
  5. [5]
    Shih, I. L. and Y. T. Van (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications.Bioresour. Technol. 79: 207–225.CrossRefGoogle Scholar
  6. [6]
    Kunioka, M. (1995) Biosynthesis of poly(γ-glutamic acid) froml-glutamine, citric acid and ammonium sulfate inBacillus subtilis IFO 3335.Appl. Microbiol. Biotechnol. 44: 501–506.CrossRefGoogle Scholar
  7. [7]
    Shih, I. L., Y. T. Van, and Y. N. Chang (2002) Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) byBacillus licheniformis CCRC 12826.Enzyme Microb. Technol. 31: 213–220.CrossRefGoogle Scholar
  8. [8]
    Troy, F. A. (1973) Chemistry and biosynthesis of the poly(γ-d-glutamyl) capsule inBacillus licheniformis. 1. Properties of the membrane-mediated biosynthetic reaction.J. Biol. Chem. 248: 305–316.Google Scholar
  9. [9]
    Kunioka, M. and A. Goto (1994) Biosynthesis of poly(γ-glutamic acid) froml-glutamic acid, citric acid, and ammonium sulfate inBacillus subtilis IFO 3335.Appl. Microbiol. Biotechnol. 40: 867–872.CrossRefGoogle Scholar
  10. [10]
    Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka, and M. Tanguchi (1993) Production of poly(γ-glutamic acid) byBacillus subtilis F-2-01.Biosci. Biotechnol. Biochem. 57: 1212–1213.Google Scholar
  11. [11]
    Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada (1996) Glutamic acid indenpendent production of poly(γ-glutamic acid) byBacillus subtilis TAM-4.Biosci. Biotechnol Biochem. 60: 1239–1242.CrossRefGoogle Scholar
  12. [12]
    Cheng, C., Y. Asada, and T. Aaida (1989) Production of γ-polyglutamic acid byBacillus subtilis A35 under denitrifying conditions.Agric. Biol. Chem. 53: 2369–2375.Google Scholar
  13. [13]
    Xu, H., M. Jiang, H. Li, D. Lu, and P. Quyang (2005) Efficient production of poly(γ-glutamic acid) by newly isolatedBacillus subtilis NX-2.Process Biochem. 40: 519–523.CrossRefGoogle Scholar
  14. [14]
    Kada, S., H. Nanamiya, F. Kawamura, and S. Horinouchi (2004) Glr, a glutamate racemase, suppliesd-glutamate to both peptidoglycan synthesis and poly-γ-glutamate production in γ-PGA-producingBacillus subtilis.FEMS Microbiol. Lett. 236: 13–20.Google Scholar
  15. [15]
    Ryu, H. W., J. S. Yun, D. Y. Jung, and S. Jung (2004) Manufacturing process of poly-glutamic acid using a newly isolatedBacillus sp. RKY3 KCTC 10412BP.Korea Patent application no. 10-2004-0027859. drolysis of poly(γ-glutamic acid) fromBacillus subtilis IFO 5335.Biosci. Biotechnol. Biochem. 56: 1031–1035.Google Scholar
  16. [17]
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  17. [18]
    Shih, I. L., Y. T. Van, L. C. Yeh, H. G. Lin, and Y. N. Chang (2001) Production of a biopolymer flocculant fromBacillus licheniformis and its flocculation properties.Bioresour. Technol. 78: 267–272.CrossRefGoogle Scholar
  18. [19]
    Birrer, G. A., A. M. Cromwick, and R. A. Gross (1994) γ-Poly(glutamic acid) formation byBacillus licheniformis 9945A: physiological and biochemical studies.Int. J. Biol. Macromol. 16: 265–275.CrossRefGoogle Scholar
  19. [20]
    Cromwick, A. M. and R. A. Gross (1994) Effects of manganese (II) onBAcillus licheniformis ATCC 9945A physiology and γ-poly(glutamic acid) formation.Int. J. Biol. Macromol. 17: 259–267.CrossRefGoogle Scholar
  20. [21]
    Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effects of some metallic ions on glutamyl polypeptide synthesis byBacillus subtilis.J. Bacteriol. 76: 499–503.Google Scholar
  21. [22]
    Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effect of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase ofBacillus licheniformis.Biochem. Biophys. Acta 62: 432–434.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Duk-Yeon Jung
    • 1
  • Sunok Jung
    • 2
  • Jong-Sun Yun
    • 3
  • Jin-Nam Kim
    • 1
  • Young-Jung Wee
    • 1
  • Hong-Gi Jang
    • 4
  • Hwa-Won Ryu
    • 5
    Email author
  1. 1.Department of Material Chemical and Biochemical EngineeringChonnam National UniversityGwangjuKorea
  2. 2.BioNanotechnology Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  3. 3.BioHelixNajuKorea
  4. 4.Korean Institute of Natural Science Inc.NajuKorea
  5. 5.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea

Personalised recommendations