Folia Microbiologica

, Volume 51, Issue 4, pp 291–293 | Cite as

Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen

  • I. KoppováEmail author
  • F. Lukáš
  • J. Kopečný


Microorganisms with high activity of linoleic acid Δ12-cis,Δ11-trans-isomerase were isolated from the digestive tract of ruminants and characterized. The isolate with the highest isomerase activity was identified asPseudobutyrivibrio ruminis. The susceptibility of this strain to 3 fatty acids added to the grow medium was determined. A significant inhibition of bacterial growth (during a 3-d period) by linoleic acid (0.1 %) and oleic acid (5 ppm) was observed; no inhibition was found in the presence of stearic acid.


Linoleic Acid Stearic Acid Conjugate Linoleic Acid Conjugate Linoleic Acid Isomer Rumen Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belury M.A., Nickel K.P., Bird C.E., Wu Y.M.: Inhibition of mouse skin tumor promotion by dietary conjugated linoleate.Nutr. Cancer26, 149–157 (1996).PubMedCrossRefGoogle Scholar
  2. Chin S.F., Liu W., Storkson J.M., Ha Y.L., Pariza M.W.: Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens.J.Food Compos.Anal.5, 185–197 (1992).CrossRefGoogle Scholar
  3. Griinari J.M., Cori B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V.V.: Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase.J.Nutr.130, 2285–2291 (2000).PubMedGoogle Scholar
  4. Hayek M.G., Han S.N., Wu D.Y., Watkins B.A., Meydani M., Dorsey J.L., Smith D.E., Meydani S.N.: Dietary conjugated linoleic acid influences the immune response of young and old C57BL/6NCrlBR mice.J.Nutr.129, 32–38 (1999).PubMedGoogle Scholar
  5. Heipieper H.J., Meinhardt F., Segura A.: Thecis-trans isomerase of unsaturated fatty acids inPseudomonas andVibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism.FEMS Microbiol.Lett.229, 1–7 (2003).PubMedCrossRefGoogle Scholar
  6. Houseknecht K.L., Van den Heuvel J.P., Moya-Camarena S.Y., Portocarero C.P., Peck L.W., Nickel K.P., Belury M.A.: Dietary conjugated linoleic acid normalized impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat.Biochem.Biophys.Res.Commun.244, 678–682 (1998).PubMedCrossRefGoogle Scholar
  7. Hunter W.J., Baker F.C., Rosenfeld I.S., Keyser J.B., Tove S.B.: Biohydrogenation of unsaturated fatty acids. Hydrogenation by cell-free preparations ofButyrivibrio fibrisolvens.J.Biol.Chem.251, 2241–2247 (1976).PubMedGoogle Scholar
  8. Jenkins T.C.: Lipid metabolism in the rumen.J. Diary Sci.76, 3851–3863 (1993).CrossRefGoogle Scholar
  9. Kepler C.R., Tove S.B.: Linoleate Δ12-cis11-trans-isomerase.Meth.Enzymol.14, 105–109 (1966).CrossRefGoogle Scholar
  10. Kepler C.R., Tove S.B.: Biohydrogenation of unsaturated fatty acids. III. Purification and properties of a linoleate Δ12-cis11-trans-isomerase fromButyrivibrio fibrisolvens.J.Biol.Chem.242, 5686–5692 (1967).PubMedGoogle Scholar
  11. Kepler C.R., Hirons K.P., Mcneil J.J., Tove S.B.: Intermediates and products of the biohydrogenation of linoleic acid byButyrivibrio fibrisolvens.J.Biol.Chem.241, 1350–1354 (1966).PubMedGoogle Scholar
  12. Kepler C.R., Tucker W.P., Tove S.B.: Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate Δ12-cis11-trans-isomerase fromButyrivibrio fibrisolvens.J.Biol.Chem.245, 3612–3620 (1970).PubMedGoogle Scholar
  13. Kim Y.J., Liu R.H., Bond D.R., Rusell J.B.: Effect of linoleic acid concentration on conjugated linoleic acid producing byButyrivibrio fibrisolvens A38.Appl.Environ.Microbiol.66, 5226–5230 (2000).PubMedCrossRefGoogle Scholar
  14. Kopečný J., Zorec M., Mrázek J., Kobayasho Y., Marinšek-Logar R.:Butyrivibrio hungatei sp.nov. andPseudobutyrivibrio xylanivorans sp.nov., butyrate-producing bacteria from the rumen.Internat.J.Syst.Evol.Microbiol.53, 201–209 (2003).CrossRefGoogle Scholar
  15. Kramer J.K., Parodi P.W., Jensen G.R., Mosobba M.M., Yurawecz M.P., Adlof R.O.: Rumenic acid: a proposed common name for the major conjugated linoleic acid isomer found in natural products.Lipids33, 835 (1998).PubMedCrossRefGoogle Scholar
  16. Lee K.N., Kritchevsky D., Pariza M.W.: Conjugated linoleic acid and atherosclerosis in rabbits.Atherosclerosis108, 19–25 (1994).PubMedCrossRefGoogle Scholar
  17. Mrázek J., Kopečný J.: Development of competitive PCR for detection ofButyrivibrio fibrisolvens in the rumen.Folia Microbiol.46, 63–65 (2001).CrossRefGoogle Scholar
  18. Parodi P.W.: Cows milk fat components as potential anticarcinogenic agents.J.Nutr.127, 1055–1060 (1997).PubMedGoogle Scholar
  19. Steinhart C.: Conjugated linoleic acid — the good news about animal fat.J.Chem.Educ.73, A302-A303 (1996).CrossRefGoogle Scholar
  20. Zheng C.J., Yoo J.S., Lee T.G., Cho H.Y., Kim Y.H., Kim W.G.: Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids.FEBS Lett.579, 5157–5162 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  1. 1.Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations