Journal of Genetics

, 75:49 | Cite as

Reductions in genetic variation inDrosophila andE. coli caused by selection at linked sites

  • Brian Charlesworth
  • David S. Guttman


Selection at linked sites has important consequences for the properties of neutral variation and for tests of the predictions of the neutral theory of molecular evolution. We review the theory of the effect of adaptive gene substitutions on neutral variability at linked sites (hitchhiking or selective sweeps) and discuss theoretical results on the effect of selection against deleterious alleles on variation at linked sites (background selection). InDrosophila melanogaster there is a clear relation between the frequency of recombination in a given region of the chromosome and the amount of natural variability in that region. Attempts to predict this relation have given rise to models of selective sweeps and background selection. We describe possible methods of discriminating between these models, and also discuss the probable strong influence of selective sweeps on variation in largely nonrecombining genomes, with particular reference toEscherichia coll. Finally we present some unresolved questions and possible directions for future research.


Selective sweeps hitchhiking background selection D. melanogaster E. coli neutral variation 


  1. Aguade M., Miyashita N. and Langley C. H. 1989 Reduced variation in theyellow-achaete-scute region in natural populations ofDrosophila melanogaster.Genetics 122: 607–615PubMedGoogle Scholar
  2. Akashi H. 1995 Inferring weak selection from patterns of polymorphism and divergence at “silent” sites inDrosophila DNA.Genetics 139: 1067–1076PubMedGoogle Scholar
  3. Aquadro C. F., Begun D. J. and Kindahl E. C. 1994 Selection, recombination, and DNA polymorphism inDrosophila. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 46–56Google Scholar
  4. Ashburner M. 1989Drosophila: a laboratory handbook (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)Google Scholar
  5. Atwood K. C., Schneider L. K. and Ryan F. J. 1951a Selective mechanisms in bacteria.Cold Spring Harbor Symp. Quant. Biol. 16: 345–355PubMedGoogle Scholar
  6. Atwood K. C., Schneider L. K. and Ryan F. J. 1951b Periodic selection inEscherichia coli.Proc. Natl, Acad. Sci. USA 37:146–155CrossRefGoogle Scholar
  7. Barton N. H. 1995 Linkage and the limits to natural selection.Genetics 140: 82–84Google Scholar
  8. Begun D. J. and Aquadro C. F. 1992 Levels of naturally occurring DNA polymorphism correlate with recombination rate inDrosophila melanogaster.Nature 356: 519–520PubMedCrossRefGoogle Scholar
  9. Berg O. G. 1995 Periodic selection and hitchhiking in a bacterial population.J. Theor. Biol 173: 307–320PubMedCrossRefGoogle Scholar
  10. Berg O. G. 1996 Selection intensity for codon bias and the effective population size ofEscherichia coli Genetics 142: 1379–1382Google Scholar
  11. Berry A. J., Ajioka J. W. and Kreitman M. 1991 Lack of polymorphism on theDrosophila fourth chromosome resulting from selection.Genetics 129: 1111–1117PubMedGoogle Scholar
  12. Bird A. P. 1995 Gene number, noise reduction and biological complexity.Trends Genet. 11: 94–100PubMedCrossRefGoogle Scholar
  13. Birky C. W. and Walsh J. B. 1988 Effects of linkage on rates of molecular evolution.Proc. Natl. Acad. Sci. USA 85: 6414–6418PubMedCrossRefGoogle Scholar
  14. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H. and Stephan W. 1995 The hitchhiking effect on the site frequency spectrum of DNA polymorphism.Genetics 140: 783–796PubMedGoogle Scholar
  15. Charlesworth B. 1992 New genes sweep clean.Nature 356: 475–476PubMedCrossRefGoogle Scholar
  16. Charlesworth B. 1994a The effect of background selection against deleterious alleles on weakly selected, linked variants.Genet. Res. 63: 213–228PubMedGoogle Scholar
  17. Charlesworth B. 1994b Patterns in the genome.Curr. Biol. 4: 182–184PubMedCrossRefGoogle Scholar
  18. Charlesworth B. 1996 Background selection and patterns of genetic diversity inDrosophila melanogaster. Genet. Res. (in press)Google Scholar
  19. Charlesworth B., Morgan M. T. and Charlesworth D. 1993 The effect of deleterious mutations on neutral molecular variation.Genetics 34: 1289–1303Google Scholar
  20. Charlesworth D., Charlesworth B. and Morgan M. T. 1995 The pattern of neutral molecular variation under the background selection model.Genetics 141: 1619–1632PubMedGoogle Scholar
  21. Crow J. F. 1993 How much do we know about spontaneous human mutation rates?Environ. Mol. Mut. 21: 122–129CrossRefGoogle Scholar
  22. Crow J. F. and Simmons M. J. 1983 The mutation load inDrosophila. InThe genetics and biology of Drosophila (eds.) M. Ashburner, H. L. Carson and J. N. Thompson (London: Academic Press) vol. 3c, pp. 1–35Google Scholar
  23. Drake J. W. 1992 Mutation rates.Bioessays 14: 137–140PubMedCrossRefGoogle Scholar
  24. Dykhuizen D. E. 1992 Periodic selection. InEncyclopedia of microbiology (San Diego: Academic Press) pp. 351–355Google Scholar
  25. Dykhuizen D. E. and Hartl D. L. 1983 Selection in chemostats.Microbiol. Rev. 47: 150–168PubMedGoogle Scholar
  26. Fu Y. -X. and Li W. -H. 1993 Statistical tests of neutrality of mutations.Genetics 133: 693–709PubMedGoogle Scholar
  27. Gillespie J. H. 1994 Alternatives to the neutral theory. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 1–17Google Scholar
  28. Guttman D. S. and Dykhuizen D. E. 1994a Detecting selective sweeps in naturally occurringEscherichia coli.Genetics 138: 993–1003PubMedGoogle Scholar
  29. Guttman D. S. and Dykhuizen D. E. 1994b Clonal divergence inEscherichia coli as a result of recombination, not mutation.Science 266: 1380–1383PubMedCrossRefGoogle Scholar
  30. Haldane J. B. S. 1927 A mathematical theory of natural and artificial selection. Part V. Selection and mutation.Proc. Cambridge Philos. Soc. 23: 838–844Google Scholar
  31. Hartl D. L., Moriyama E. N. and Sawyer S. A. 1994 Selection intensity for codon bias.Genetics 138: 227–234PubMedGoogle Scholar
  32. Hudson R. R. 1994 How can the low levels of DNA sequence variation in regions of theDrosophila genome with low recombination rates be explained?Proc. Natl. Acad. Sci USA 91: 6815–6818PubMedCrossRefGoogle Scholar
  33. Hudson R. R. and Kaplan N. L. 1994 Gene trees with background selection. InNon-neutral evolution: theories and molecular data (ed.) B. Golding (London: Chapman and Hall) pp. 140–153Google Scholar
  34. Hudson R. R. and Kaplan N. L. 1995 Deleterious background selection with recombination.Genetics 141: 1605–1617PubMedGoogle Scholar
  35. Hudson R. R., Kreitman M. and Aguade M. 1987 A test of neutral molecular evolution based on nucleotide data.Genetics 116: 153–159PubMedGoogle Scholar
  36. Jarne P. 1995 Mating system, bottlenecks and polymorphism in hermaphroditic animals.Genet. Res. 65: 193–207CrossRefGoogle Scholar
  37. Kaplan N. L., Hudson R. R. and Langley C. H. 1989 The “hitch-hiking“ effect revisited.Genetics 123: 887–899PubMedGoogle Scholar
  38. Keightley P. D. 1994 The distribution of mutation effects on viability inDrosophila melanogaster.Genetics 138: 1–8Google Scholar
  39. Kimura M. 1971 Theoretical foundations of population genetics at the molecular level.Theor. Popul. Biol. 2: 174–208PubMedCrossRefGoogle Scholar
  40. Kimura M. 1983The neutral theory of molecular evolution (Cambridge: Cambridge University Press)Google Scholar
  41. Kimura M. and Crow J. F. 1964 The number of alleles that can be maintained in a finite population.Genetics 49: 725–738PubMedGoogle Scholar
  42. Kimura M. and Maruyama T. 1966 The mutational load with epistatic gene interactions in fitness.Genetics 54: 1303–1312Google Scholar
  43. Kimura M. and Ohta T. 1969 The average number of generations until extinction of an individual mutant gene in a population.Genetics 63: 701–709PubMedGoogle Scholar
  44. Kliman R. M. and Hey J. 1993 Reduced natural selection associated with low recombination inDrosophila melanogaster.Mol. Biol Evol. 10: 1239–1258PubMedGoogle Scholar
  45. Kreitman M. 1983 Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster.Nature 304: 412–417PubMedCrossRefGoogle Scholar
  46. Kreitman M. 1991 Detecting selection at the level of DNA. InEvolution at the molecular level (eds.) R. K. Selander, A. G. Clark and T. S. Whittam (Sunderland, Mass., USA: Sinauer) pp. 202–221Google Scholar
  47. Kreitman M. and Wayne M. L. 1994 Organization of genetic variation at the molecular level: lessons fromDrosophila. InMolecular ecology and evolution: approaches and applications (eds.) B. Schierwater, B. Streit, G. P. Wagner and R. DeSalle (Basel: Birkhauser) pp. 157–184Google Scholar
  48. Levin B. R. 1981 Periodic selection, infectious gene exchange and the genetic structure ofE. coli populations.Genetics 99: 1–23PubMedGoogle Scholar
  49. Levin B. R. 1988 The evolution of sex in bacteria. InThe evolution of sex (eds.) R. E. Michod and B. R. Levin (Sunderland, Mass., USA: Sinauer) pp. 194–211Google Scholar
  50. Lindsley D. L. and Zimm G. G. 1992The genome of Drosophila melanogaster (San Diego: Academic Press)Google Scholar
  51. Maynard Smith J. 1991 The population genetics of bacteria.Proc. R. Soc. London B245: 37–41CrossRefGoogle Scholar
  52. Maynard Smith J. and Haigh J. 1974 The hitch-hiking effect of a favourable gene.Genet. Res. 23: 23–35Google Scholar
  53. Maynard Smith J., Smith N. H., O’Rourke M. and Spratt B. G. 1993 How clonal are bacteria?Proc. Natl. Acad. Sri. USA 90: 4384–4388CrossRefGoogle Scholar
  54. Milkman R. 1973 Electrophoretic variation inEscherichia coli from natural sources.Science 182: 1024–1026PubMedCrossRefGoogle Scholar
  55. Milkman R. 1975 Allozyme variation ofE. coli of diverse natural origins. InIsozymes (ed.) C. L. Markert (New York: Academic Press) vol. 4, pp. 273–285Google Scholar
  56. Milkman R. and Bridges M. M. 1990 Molecular evolution of theEscherichia coli chromosome. III. Clonal frames.Genetics 126: 505–517PubMedGoogle Scholar
  57. Moriyama E. N. and Powell J. R. 1996 Intraspecific nuclear DN A variation inDrosophila.Mol. Biol. Evol. 13: 261–277PubMedGoogle Scholar
  58. Mukai T., Chigusa S. I., Mettler L. E. and Crow J. F. 1972 Mutation rate and dominance of genes affecting viability inDrosophila melanogaster.Genetics 72: 335–355PubMedGoogle Scholar
  59. Nordborg M., Charlesworth B. and Charlesworth D. 1996 The effect of recombination on background selection.Genet. Res. 67: 159–174PubMedGoogle Scholar
  60. Ohnishi O. 1977 Spontaneous and ethyl methanesulfonate-induced mutations controlling viability inDrosophila melanogaster. II. Homozygous effects of polygenic mutations.Genetics 87: 529–545PubMedGoogle Scholar
  61. Ohta T. 1971 Associative overdominance caused by linked detrimental mutations.Genet. Res. 18: 277–286Google Scholar
  62. Ohta T. 1973 Effect of linkage on behaviour of mutant genes in finite populations.Theor. Popul. Biol. 4: 145–172CrossRefGoogle Scholar
  63. Ohta T. and Kimura M. 1975 The effect of a selected locus on heterozygosity of neutral alleles (the hitch-hiking effect).Genet. Res. 25: 313–326Google Scholar
  64. Peck J. 1994 A ruby in the rubbish: beneficial mutations, deleterious mutations, and the evolution of sex.Genetics 137: 597–606PubMedGoogle Scholar
  65. Reeves P. R. 1992 Variation in O-antigens, niche-specific selection, and bacterial populations.FEMS Microbiol. Lett. 100: 509–516CrossRefGoogle Scholar
  66. Selander R. K. and Levin B. R. 1980 Genetic diversity and structure inEscherichia coli populations.Science 210: 545–547PubMedCrossRefGoogle Scholar
  67. Simonsen K. L., Churchill G. A. and Aquadro C. F. 1995 Properties of statistical tests of neutrality for DNA polymorphism data.Genetics 141: 413–429PubMedGoogle Scholar
  68. Slatkin M. 1995 Hitchhiking and associative overdominance at a microsatellite locus.Mol. Biol. Evol. 12: 473–480PubMedGoogle Scholar
  69. Stephan W. 1995 An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data.Mol. Biol. Evol 12: 959–962PubMedGoogle Scholar
  70. Stephan W. and Langley C. H. 1989 Molecular genetic variation in the centromeric region of the X chromosome in threeDrosophila ananassae populations. I. Contrasts between thevermilion andforked loci.Genetics 121: 89–99PubMedGoogle Scholar
  71. Stephan W., Wiehe T. H. E. and Lenz M. W. 1992 The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory.Theor. Popul. Biol. 41: 237–254CrossRefGoogle Scholar
  72. Sturtevant A. H. 1929 The genetics ofDrosophila simulans.Carnegie Inst. Wash. Publ. 399: 1–62Google Scholar
  73. Sved J. A. 1972 Heterosis at the level of the chromosome and at the level of the gene.Theor. Popul. Biol 3: 491–506PubMedCrossRefGoogle Scholar
  74. Tajima F. 1989 Statistical method for testing the neutral mutation hypothesis.Genetics 123: 585–595PubMedGoogle Scholar
  75. Thomson G. 1977 The effect of a selected locus on linked neutral loci.Genetics 85: 753–788PubMedGoogle Scholar
  76. True J. R., Mercer J. M. and Laurie C. C. 1996 Differences in crossover frequency and distribution among three sibling species ofDrosophila.Genetics 142: 507–523PubMedGoogle Scholar
  77. Whittam T. S. and Ake S. E. 1993 Genetic polymorphisms and recombination in natural populations ofE. coli. InMechanisms of molecular evolution (eds.) N. Takahata and A. G. Clark (Sunderland, Mass., USA: Sinauer) pp. 223–245Google Scholar
  78. Wiehe T. H. E. and Stephan W. 1993 Analysis of a genetic hitchhiking model and its application to DNA polymorphism data.Mol. Biol. Evol. 10: 842–854PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Brian Charlesworth
    • 1
  • David S. Guttman
    • 1
  1. 1.Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA

Personalised recommendations