Folia Microbiologica

, Volume 49, Issue 1, pp 13–18 | Cite as

Purification and characterization of xylanases fromAspergillus giganteus

Article

Abstract

A strain ofAspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50 °C temperature optimum; optimum pH was 6.0–6.5 for xylanase I and 6.0 for xylanase II. At 50 °C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attili D.S.: Isolamento, indentificação e ecologia de fungos celuloliticos do solo da estação ecológica de Juréia-Itatins, São Paulo.PhD Thesis. UNESP, Rio Claro (Brazil) 1994.Google Scholar
  2. Augustín J.: Polysaccharide hydrolases ofAureobasidium pullulans.Folia Microbiol. 45, 143–146 (2000).CrossRefGoogle Scholar
  3. Bhat M.K.: Cellulases and related enzymes in biotechnology.Biotechnol.Adv. 18, 355–383 (2000).PubMedCrossRefGoogle Scholar
  4. Biely P.: Microbial xylanolytic systems.Trends Biotechnol. 3, 286–290 (1985).CrossRefGoogle Scholar
  5. Carmona E.C., Brochetto-Braga M.R., Pizzirani-Kleiner A.A., Jorge J.A.: Purification and biochemical characterization of an endoxylanase fromAspergillus versicolor.FEMS Microbiol.Lett. 166, 311–315 (1998).CrossRefGoogle Scholar
  6. Čepeljnik T., Zorec M., Kostanjšek R., Nekrep F.V., Marinšek-Logar R.: IsPseudobutyrivibrio xylanivorans strain Mz5T suitable as a probiotic? Anin vitro study.Folia Microbiol. 48, 339–345 (2003).CrossRefGoogle Scholar
  7. Coelho G.D., Carmona E.C.: Xylanolytic complex fromAspergillus giganteus: production and characterization.J.Basic Microbiol. 43, 269–277 (2003).PubMedCrossRefGoogle Scholar
  8. Dubois M., Gibles K.A., Hamilton J.K., Ribers P.A., Smith F.: Colorimetric method for determination of sugars and related substances.Anal.Chem. 58, 350–356 (1956).CrossRefGoogle Scholar
  9. Fernandez-Espinar M.T., Pinaga F., de Graaff L., Visser J., Ramón D., Valles S.: Purification, characterization and regulation of the synthesis of anAspergillus nidulans acidic xylanase.Appl.Microbiol.Biotechnol. 42, 555–562 (1994).CrossRefGoogle Scholar
  10. Fontana J.D., Gebara M., Blumel M., Schneider H., Mackenzie C.R., Johnson K.G.: α-4-O-Methyl-d-glucuronidase component of xylanolytic complexes.Meth.Enzymol. 160, 560–571 (1988).CrossRefGoogle Scholar
  11. Kolarova N., Augustin J.: Production of polysaccharide hydrolases in the genusRhizopus.Folia Microbiol. 46, 223–226 (2001).CrossRefGoogle Scholar
  12. Kulkarni N., Shendye A., Rao M.: Molecular and biotechnological aspects of xylanases.FEMS Microbiol.Rev. 23, 411–456 (1999).PubMedCrossRefGoogle Scholar
  13. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  14. Li K., Azadi P., Collins R., Tolan J., Kim J.S., Eriksson K.E.L.: Relationships between activities of xylanases and xylan structures.Enzyme Microb.Technol. 27, 89–94 (2000).CrossRefGoogle Scholar
  15. Lineweaver H., Burk D.: The determination of the enzyme dissociation.J.Am.Chem.Soc. 56, 658–666 (1934).CrossRefGoogle Scholar
  16. Miller G.H.: Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal.Chem. 31, 426–429 (1959)CrossRefGoogle Scholar
  17. Prade R.A.: Xylanases: from biology to biotechnology.Biotech.Genet.Eng.Rev. 13, 101–131 (1995).Google Scholar
  18. Scopes R.K.:Protein Purification: Principles and Practice, 3rd ed. Springer-Verlag, New York 1994.Google Scholar
  19. Sedmack J.J., Grossberg S.E.: A rapid, sensitive, and versatile assay for protein using Coomassie Brilliant Blue G250.Anal.Biochem. 78, 544–552 (1977).CrossRefGoogle Scholar
  20. Subramaniyan S., Prema P.: Biotechnology of microbial xylanases: enzymology, molecular biology, and application.Crit.Rev.Biotechnol. 22, 33–64 (2002).PubMedCrossRefGoogle Scholar
  21. Viikari L., Kantelinem A., Sundquist J., Linko M.: Xylanases in bleaching: from an idea to the industry.FEMS Microbiol.Rev. 13, 335–350 (1994).CrossRefGoogle Scholar
  22. Vogel H.J.: A convenient growth medium forNeurospora (Medium N).Microb.Genet.Bull. 13, 42–43 (1956).Google Scholar
  23. Wong K.K.Y., Tan L.U.L., Saddler J.N.: Multiplicity of β-1,4-xylanase in microorganisms: functions and applications.Microbiol. Rev. 52, 305–317 (1988).PubMedGoogle Scholar
  24. Woodward J.: Xylanases: functions, properties and applications.Topics Enzyme Ferment.Biotechnol. 8, 9–30 (1984).Google Scholar
  25. Zorec M., Čepeljnik T., Nekrep F.V., Marinšek-Logar R.: Multiple endoxylanases ofButyrivibrio sp.Folia Microbiol. 46, 94–96 (2001).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  1. 1.Departmento de Bioquímica e Microbiologia. Instituto de BiociênciasUNESPRio Claro, São PauloBrazil

Personalised recommendations