Folia Microbiologica

, Volume 51, Issue 6, pp 573–578 | Cite as

The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures ofIrpex lacteus

  • K. SvobodováEmail author
  • P. Erbanová
  • J. Sklenář
  • Č. Novotný


Dye decolorization capacity of two white-rot fungi,Irpex lacteus andPhanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitatedI. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. Thein vitro dye decolorization using the purified enzyme proved its decolorization ability.


Nonionic Surfactant Ligninolytic Enzyme Manganese Peroxidase Veratryl Alcohol Ligninolytic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bromophenol Blue


Chicago Sky Blue


copper(II) phthalocyanine


Disperse Blue 3




lignin peroxidases


Methylene Blue


3-methyl-2-benzothiazolinone hydrazone


Mn-dependent peroxidases


Naphthol Blue Black


Remazol Brilliant Blue R


Reactive Orange 16


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourbonnais R., Paice M.G.: Substrate range of veratryl alcohol oxidase and phenol oxidase from white rot fungi.Abstr.Pap.Amer.Chem.Soc. 199, 38 (1990).Google Scholar
  2. Campos R., Kandelbauer A., Robra K.H., Cavaco-Paulo A., Gubitz G.M.: Indigo degradation with purified laccases fromTrametes hirsuta andSelerotium rolfsii.J.Biotechnol. 89, 131–139 (2001).CrossRefPubMedGoogle Scholar
  3. Chivukula M., Spadaro J.T., Renganathan V.: Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides.Biochemistry 34, 7765–7772 (1995).CrossRefPubMedGoogle Scholar
  4. Claus H., Faber G., König H.: Redox-mediated decolorization of synthetic dyes by fungal laccases.Appl.Microbiol.Biotechnol. 59, 672–678 (2002).CrossRefPubMedGoogle Scholar
  5. Couto S.R., Rivela I., Muñoz M.R., Sanroman A.: Stimulation of ligninolytic enzyme production and the ability to decolourise Poly R-478 in semi-solid state cultures ofPhancrochaete chrysosporium.Biores.Technol. 74, 159–164 (2000).CrossRefGoogle Scholar
  6. Hammel K.E., Kapich A.N., Jensen K.A., Ryan Z.C.: Reactive oxygen species as agents of wood decay by fungi.Enzyme Microb.Technol. 30, 445–453 (2002).CrossRefGoogle Scholar
  7. Harazono K., Watanabe Y., Nakamura K.: Decolorization of azo dye by the white-rot basidiomycetePhanerochaete sordida and by its manganese peroxidase.J.Biosci.Bioeng. 95, 455–459 (2003).PubMedGoogle Scholar
  8. Heinfling A., Martinez M.J., Martinez A.T., Bergbauer M., Szewzyk U.: Transformation of industrial dyes by manganese peroxidases fromBjerkandera adusta andPleurotus eryngii in a manganese-independent reaction.Appl.Environ.Microbiol. 64, 2788–2793 (1998).PubMedGoogle Scholar
  9. Kasinath A., Novotný Č., Svobodová K., Patel K.C., Šašek V.: Decolorization of synthetic dyes byIrpex lacteus in liquid cultures and packed-bed bioreactor.Enzyme Microb.Technol. 32, 167–173 (2003).CrossRefGoogle Scholar
  10. Kim H.Y., Song H.G.: Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungusIrpex lacteus.Appl.Microbiol.Biotechnol. 61, 150–156 (2003).PubMedGoogle Scholar
  11. Maximo C., Costa-Ferreira M.: Decolourisation of reactive textile dyes byIrpex lacteus and lignin modifying enzymes.Process Biochem. 39, 1475–1479 (2004).CrossRefGoogle Scholar
  12. Mielgo I., Lopez C., Moreira M.T., Feijoo G., Lema J.M.: Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions.Biotechnol.Progr. 19, 325–331 (2003).CrossRefGoogle Scholar
  13. Moen M.A., Hammel K.E.: Lipid-peroxidation by the manganese peroxidase ofPhanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus.Appl.Environ.Microbiol. 60, 1956–1961 (1994).PubMedGoogle Scholar
  14. Moldes D., Couto S.R., Cameselle C., Sanroman M.A.: Study of the degradation of dyes by MnP ofPhanerochaete chrysosporium produced in a fixed-bed bioreactor.Chemosphere 51, 295–303 (2003).CrossRefPubMedGoogle Scholar
  15. Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., Šašek V.: Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate.Soil Biol.Biochem. 36, 1545–1551 (2004).CrossRefGoogle Scholar
  16. Ollikka P., Harjunpaa T., Palmu K., Mantsala P., Suominen I.: Oxidation of Crocein Orange G by lignin peroxidase isoenzymes kinetics and effect of H2O2.Appl.Biochem.Biotechnol. 75, 307–321 (1998).CrossRefPubMedGoogle Scholar
  17. Paszczyński A., Crawford R.L.: Potential for bioremediation of xenobiotic compounds by the white rot fungusPhanerochaete chrysosporium.Biotechnol.Progr. 11, 368–379 (1995).CrossRefGoogle Scholar
  18. Pease E.A., Tien M.: Heterogeneity and regulation of manganese peroxidases fromPhanerochaete chrysosporium.J.Bacteriol. 174, 3532–3540 (1992).PubMedGoogle Scholar
  19. Pointing S.B.: Feasibility of bioremediation by white-rot fungi.Appl.Microbiol.Biotechnol. 57, 20–33 (2001).CrossRefPubMedGoogle Scholar
  20. Rabinovich M.L., Bolobova A.V., Vasil’chenko L.G.: Fungal decomposition of natural aromatic structures and xenobiotics: a review.Appl.Biochem.Microbiol. 40, 1–17 (2004).CrossRefGoogle Scholar
  21. Rothschild N., Novotný Č., Šašek V., Dosoretz C.G.: Ligninolytic enzymes of the fungusIrpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase.Enzyme Microb.Technol. 31, 627–633 (2002).CrossRefGoogle Scholar
  22. Saparrat M.C.N., Guillén F.: Ligninolytic ability and potential biotechnology applications of the South American fungusPleurotus laciniatocrenatus.Folia Microbiol. 50, 155–160 (2005).CrossRefGoogle Scholar
  23. Schliephake K., Mainwaring D.E., Lonergan G.T., Jones I.K., Baker W.L.: Transformation and degradation of the bisazo dye Chicago Sky Blue by a purified laccase fromPycnoporus cinnabarinus.Enzyme Microb.Technol. 27, 100–107 (2000).CrossRefPubMedGoogle Scholar
  24. Selvam K., Swaminathan K., Chae K.S.: Decolourization of azo dyes and a dye industry effluent by a white rot fungusThelephora sp.Biores.Technol. 88, 115–119 (2003).CrossRefGoogle Scholar
  25. Shin K.W.: The role of enzymes produced by white-rot fungusIrpex lacteus in the decolorization of the textile industry effluent.J.Microbiol. 42, 37–41 (2004).PubMedGoogle Scholar
  26. Shin K.S., Kim Y.H., Lim J.S.: Purification and characterization of manganese peroxidase of the white-rot fungusIrpex lacteus.J.Microbiol. 43, 503–509 (2005).PubMedGoogle Scholar
  27. Soares G.M.B., Costa-Ferreira M., de Amorim M.T.P.: Decolorization of an anthraquinone-type dye using a laccase formulation.Biores.Technol. 79, 171–177 (2001).CrossRefGoogle Scholar
  28. Swamy J., Ramsay J.A.: The evaluation of white rot fungi in the decoloration of textile dyes.Enzyme Microb.Technol. 24, 130–137 (1999).CrossRefGoogle Scholar
  29. Tien M., Kirk T.K.: Lignin peroxidase fromPhanerochaete chrysosporium.Meth.Enzymol. 161, 238–248 (1988).CrossRefGoogle Scholar
  30. Urek R.O., Pazarlioglu N.K.: Production and stimulation of manganese peroxidase by immobilizedPhanerochaete chrysosporium.Process Biochem. 40, 83–87 (2005).CrossRefGoogle Scholar
  31. Vyas B.R.M., Bakowski S., Šašek V., Matucha M.: Degradation of anthracene by selected white-rot fungi.FEMS Microbiol.Ecol. 14, 65–70 (1994).CrossRefGoogle Scholar
  32. Wang Y.X., Yu J.: Adsorption and degradation of synthetic dyes on the mycelium ofTrametes versicolor.Water Sci.Technol. 38, 233–238 (1998).Google Scholar
  33. Young L., Yu J.: Ligninase-catalyzed decolorization of synthetic dyes.Water Res. 31, 1187–1193 (1997).CrossRefGoogle Scholar
  34. Zheng Z.M., Obbard J.P.: Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry byPhanerochaete chrysosporium.J.Chem.Technol.Biotechnol. 76, 423–429 (2001).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • K. Svobodová
    • 1
    Email author
  • P. Erbanová
    • 1
  • J. Sklenář
    • 1
  • Č. Novotný
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations