Folia Microbiologica

, Volume 49, Issue 4, pp 423–429 | Cite as

Soil microbial counts and identification of culturable bacteria in an extreme by arid zone

  • Jianping Su
  • Yanqing Wu
  • Xiaojun Ma
  • Gaosen Zhang
  • Huyuan Feng
  • Yinghua Zhang
Article

Abstract

Sixteen samples of two soil cores (about 550 and 180 cm in depth) were drilled at intervals in the lower reach of Heihe river basin (northwest of China) in order to illustrate soil microbial characteristics and diversity of culturable bacteria in an extreme by arid environment. Soil water content, organic matter, total nitrogen, pH, direct cell counts, and culturable microorganism counts were evaluated. The total cell concentration was 19–1120/µg (i.e. 0.19–11.2 × 108 per g) soil, the culturable bacteria count being 0.2–10.9 per µg (i.e. 2 × 105–10.9 × 106 CFU/g) soil. The number of direct cell counts obtained by 4′,6-diamidino-2-phenylindole-staining or the cound of culturable microbes after enrichment with different media were statistically significantly correlated with soil organic matters, total nitrogen content, soil water content and surface vegetation; this partly explained the larger number in the deeper first core than in the shallower one. As part of identification of 228 colonies isolated from the two cores, thirty-two were selected for 16S rDNA amplification, sequencing and molecular identification. These 32 isolates were affiliated to 5 major groups of bacteria: α-Proteobacteria, β-Proteobacteria, λ-Proteobacteria, the high-G+C G+-bacteria, the low-G+C G-bacteria, and theCytophaga-Flexibacter-Bacteroides group. Twenty-eight were rod- or short-rod shaped, which accounted for >87.5 % of all species; only 4 of 32 species were cocci (<12.5 %).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkwill D.L., Reeves R.H., Drake G.R., Reeves J.Y., Crocker F.H., King M.B., Boone D.R.: Phylogenetic characterization of bacteria in the subsurface microbial culture collection.FEMS Microbiol.Rev. 20, 191–200 (1997).CrossRefGoogle Scholar
  2. Balkwill D.L.: Numbers, diversity, and morphological characteristics of aerobic, chemoheterophic bacteria in deep subsurface sediments from a site in South Carolina.Geomicrobiol.J. 7, 33–52 (1989).CrossRefGoogle Scholar
  3. Bogoev V.M., Kenarova A.E., Vasilev V.L., Gyosheva M.M.: Quantitative distribution of microbial biomass in the soil profile of a high-mountain grassy ecosystem.Folia Microbiol. 48, 56–60 (2002).CrossRefGoogle Scholar
  4. Cajthaml T., Bhatt M., Šasek V., Matějů V.: Bioremediation of PAH-contaminated soil by composting: a case study.Folia Microbiol. 48, 696–700 (2002).CrossRefGoogle Scholar
  5. Cheng G.D.: Study on the sustainable development in Heihe river basin from the view of ecological economics.J.Glaciol.Geocryol. 24, 335–343 (2002).Google Scholar
  6. Derry A.M., Staddon W.J., Kevan P.G., Trevors J.T.: Functional diversity and community structure of microorganisms in three arctic soils as determined by SCSU.Biodivers.Conserv. 8, 205–221 (1999).CrossRefGoogle Scholar
  7. El-Hendawy H.H., Osman M.E., Sorour N.M.: Characterization of two antagonistic strains ofRahnella aquatilis isolated from soil in Egypt.Folia Microbiol. 48, 799–804 (2003).CrossRefGoogle Scholar
  8. El-Komy H.M.A., Saad O.A.O., Hetta A.M.A.: Significance ofHerbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using15N-dilution method.Folia Microbiol. 48, 787–793 (2003).CrossRefGoogle Scholar
  9. Elhottova D., Szili-Kovács T., Třiska J.: Soil microbial community of abandoned sand fields.Folia Microbiol. 48, 435–440 (2002).CrossRefGoogle Scholar
  10. Gilichinsky D.A., Soina V.S., Petrova M.A.: Cryoprotective properties of water in the earth cryolithosphere and its role in exobiology.Origins Life Evol.Biosph. 23, 65–75 (1993).CrossRefGoogle Scholar
  11. Gilichinsky D.A., Wagener S.: Microbial life in permafrost: a historical review.Permafrost Periglac.Proc. 6, 234–250 (1995).Google Scholar
  12. Horneck G.: The microbial world and the case for Mars.Planet.Space Sci. 48, 1053–1063 (2000).CrossRefGoogle Scholar
  13. Hoyle B.L., Arthur E.L.: Biotransformation of pesticides in saturated-zone materials.Hydrogeol.J. 8, 89–103 (2000).CrossRefGoogle Scholar
  14. Junge K., Imhoff F., Staley T., Dewing J.W.: Phylogenetic diversity of numerically important arctic sea-ice bacteria cultured at subzero temperature.Microb.Ecol. 43, 315–328 (2002).CrossRefPubMedGoogle Scholar
  15. Kandelerl E., Marschner P., Tscherko D., Gahoonia T.S., Nielsen N.E.: Microbial community composition and functional diversity in the rhizosphere of maize.Plant & Soil 238, 301–312 (2002).CrossRefGoogle Scholar
  16. Kaneko T., Atlas R.: Diversity of bacterial populations in the Beaufort Sea.Nature 270, 596–599 (1977).CrossRefGoogle Scholar
  17. Kao C.M., Chen S.C., Chen Y.S., Lin H.M., Chen Y.L.: Detection ofBurkholderia pseudomallei in rice fields with PCR-based technique.Folia Microbiol. 48, 521–524 (2003).CrossRefGoogle Scholar
  18. Krumholz L.R.: Microbial communities in the deep subsurface.Hydrogeol.J. 8, 4–10 (2000).Google Scholar
  19. Llobet-Brossa E., Rosselló-Mora R., Amann R.: Microbial community composition of Wadden Sea sediments as revealed by fluorescencein situ hybridization.Appl.Environ.Microbiol. 64, 2691–2696 (1998).PubMedCentralPubMedGoogle Scholar
  20. Marilley L., Aragno M.: Phylogenetic diversity of bacterial communities differing in degree of proximity ofLolium perenne andTrifolium repens roots.Appl.Soil Ecol. 13, 127–136 (1999).CrossRefGoogle Scholar
  21. Mohapatra B.R., Bapuji M., Sree A.: Antifungal efficacy of bacteria isolated from marine sedentary organisms.Folia Microbiol. 48, 51–55 (2002).CrossRefGoogle Scholar
  22. Moyer L.C., Dobbs F.C., Karl D.M.: Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamountm, Hawaii.Appl.Environ.Microbiol. 61, 1555–1562 (1995).PubMedCentralPubMedGoogle Scholar
  23. Ohtonen R., Väre H.: Vegetation composition determined microbial activities in a boreal forest soil.Microb.Ecol. 36, 328–335 (1998).CrossRefPubMedGoogle Scholar
  24. Parkes R.J., Cragg B.A., Wellsburg C.: Recent studies on bacterial populations and processes in subseafloor sediments (review).Hydrogeol.J. 8, 11–28 (2000).CrossRefGoogle Scholar
  25. Salama R.B., Otto C.J., Fitzpatrick R.W.: Contributions of surface water conditions to soil and water salinization.Hydrogeol.J. 7, 46–64 (1999).CrossRefGoogle Scholar
  26. Sayed W.F., El-Sharouny H.M., Zahran H.H., Ali W.M.: Composition ofCasuarina leaf litter and its influence onFrankia-Casuarina symbiosis in soil.Folia Microbiol. 48, 429–434 (2002).CrossRefGoogle Scholar
  27. Scholter M., Lebuhn M., Heulin T., Hartmann A.: Ecology and evolution of bacterial microdiversity.FEMS Microbiol.Rev. 24, 647–660 (2000).CrossRefGoogle Scholar
  28. Shi T., Reeves R.H., Gilichinsky D.A., Friedmann E.I.: Characterization of culturable bacteria from Siberian permafrost by 16S rDNA sequencing.Microb.Ecol. 33, 169–179 (1997).CrossRefPubMedGoogle Scholar
  29. Staddon W.J., Trevors J.T., Duchesne L.C., Colombo C.A.: Soil microbial diversity and community structure across a climatic gradient in western Canada.Biodivers.Conservat. 7, 1081–1092 (1998).CrossRefGoogle Scholar
  30. Tiedje J.M., Asuming-Brempong S., Nusslein K., Marsh T.L., Flynn S.J.: Opening the black box of soil microbial diversity.Appl.Soil Ecol. 13, 109–122 (1999).CrossRefGoogle Scholar
  31. Vorobyova E., Sonia V., Gorlenko M., Minkovskaya N., Zalina N., Mamukelashvili A., Gilichinsky D., Rivkina E., Vishnivetskaya T.: The deep cold biosphere: facts and hypothesis.FEMS Microbiol.Rev. 20, 277–290 (1997).CrossRefGoogle Scholar
  32. Wahlström G., Danilov R.A.: Phytoplankton successions under ice cover in four lakes located in North-Eastern Sweden: effects of liming.Folia Microbiol. 48, 379–384 (2003).CrossRefGoogle Scholar
  33. Xia B.C., Zhou J.Z., Tiedje J.M.: Structures of bacteria cloning communities in the soil environment and their ecological characteristics.Acta Ecol.Sinca 21, 574–578 (2001).Google Scholar
  34. Zahran H.H., Abdel-Fattah M., Ahmad M.S., Zaky A.Y.: Polyphasic taxonomy of symbiotic rhizobia from wild leguminous plants growing in Egypt.Folia Microbiol. 48, 510–520 (2003).CrossRefGoogle Scholar
  35. Zak D.R., Grigal D.R., Gleeson S., Tilman D.: Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass.Biogeochemistry 11, 111–129 (1990).CrossRefGoogle Scholar
  36. Zak D.R., Tilman D., Parmenter R.R., Rice C.W., Fisher F.M., Vose J., Milchunas D., Martin C.W.: Plant production and soil microorganisms in late-successional ecosystems: a continental scale study.Ecology 75, 2333–2347 (1994).CrossRefGoogle Scholar
  37. Zhang X.J., Ma X.J., Yao T.D., Zhang G.S.: Diversity of 16S rDNA and environmental factor influencing microorganisms in Malan ice core.Chinese Sci.Bull. 48, 1146–1151 (2003).CrossRefGoogle Scholar
  38. Zhang X.J., Yao T.D., Ma X.J., Wang N.L.: Microorganisms in a high altitude glacier ice in Tibet.Folia Microbiol. 47, 241–245 (2002).CrossRefGoogle Scholar
  39. Zhou J., Davey M.E., Figueras J.B., Rivkina E., Gilichinsky D., Tiedjie J.M.: Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA.Microbiology 143, 3913–3919 (1997).CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • Jianping Su
    • 1
  • Yanqing Wu
    • 1
  • Xiaojun Ma
    • 1
    • 2
  • Gaosen Zhang
    • 2
  • Huyuan Feng
    • 1
    • 2
  • Yinghua Zhang
    • 1
  1. 1.State Key Laboratory of Frozen Soil and Engineering, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouP.R. China
  2. 2.School of Life Sciences, Key Laboratory of Arid and Grass Agro-Ecology of the Ministry of EducationLanzhou UniversityLanzhouP.R. China

Personalised recommendations