Advertisement

Folia Microbiologica

, 50:187 | Cite as

The use of bacteriophages in eliminating polyresistant strains ofStaphylococcus aureus andStreptococcus agalactiae

  • Z. Brnáková
  • J. Farkašovská
  • A. Godány
Article

Abstract

Temperate bacteriophages were induced in and released from isolates ofStaphylococcus aureus andStreptococcus agalactiae using mitomycin C. Various specific indicator cultures were tested for providing clear plaques after phage infection. Specific lytic mixture of bacteriophages was prepared using the induced, modified and laboratory variants of phages. Under laboratory conditions, the mixture eliminated all isolates from the tested collection of microorganisms. The restriction barrier of some bacterial isolates to bacteriophage infection was overcome either by UV irradiation orin vitro modification of bacteriophage DNA with specific methyltransferases. Conjugative R plasmids, capable of replication in G+ and G bacteria, were detected and isolated fromS. aureus andS. agalactiae antibiotic-resistant strains.

Keywords

Indicator Strain Phage Infection Bacteriophage Therapy Streptococcus Agalactiae Temperate Bacteriophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Augustin J., Gotz F.: Transformation ofStaphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation.FEMS Microbiol.Lett. 54, 203–237 (1990).PubMedCrossRefGoogle Scholar
  2. Birnboim H.C., Doly J.: A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucl.Acids Res. 24, 1513–1521 (1979).CrossRefGoogle Scholar
  3. Charpentier E., Courvalin P.: Antibiotic resistance inListeria spp.Antimicrob.Agents Chemother. 43, 2103–2108 (1999).PubMedGoogle Scholar
  4. Climo M.W., Sharma V.K, Archer G.L.: Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGOl.J.Bacteriol. 178, 4975–4983 (1996).PubMedGoogle Scholar
  5. Cox K.L., Baltz R.H.: Restriction of bacteriophage plaque formation ofStreptomyces spp.J.Bacteriol. 159, 431–442 (1984).Google Scholar
  6. Del Solar G., Giraldo R., Ruiz-Echeverria M.J., Espuinozo M., Diaz-Rejas: Replication and control of circular bacterial plasmids.Microbiol.Mol.Biol.Rev. 62, 434–464 (1998).PubMedGoogle Scholar
  7. Dmitriev A., Tkačiková L’., Suvorov A., Kantíková M., Mikula I., Totolian A.: Comparative genetic study of group B streptococcal strains of human and bovine origin.Folia Microbiol. 44, 449–453 (1999a).CrossRefGoogle Scholar
  8. Dmitriev A., Kantíková M., Tkáčiková L’., Mikula I.: Genetic diversity and the presence of virulence among group B streptococci of the bovine origin, pp. 78–81 inCollection of Papers from Magyar Buiatrikus Kongresszus, Siófok (Hungary) 1999b.Google Scholar
  9. Dmitriev A., Kantíková M., Mikula I., Totolian A.: Factors and genetics of pathogenicity of group B streptococci.Zh.Mikrobiol.Epidemiol.Imunobiol. 5, 92–97 (2000).Google Scholar
  10. Dmitriev A., Totolian A., Tkáčiková L’., Mikula I.: Features of the genome structure of group B streptococci of bovine origin.Folia Vet. 45, 57–63 (2001).Google Scholar
  11. Dmitriev A., Shakleina E., Tkáčiková L’., Mikula I., Totolian A.: Genetic heterogeneity of the pathogenic potentials of human and bovine group B streptococci.Folia Microbiol. 47, 291–295 (2002).CrossRefGoogle Scholar
  12. Dmitriev A., Yang M., Shakleina E., Tkáčiková L’., Suvorov A., Mikula I., Yang Y.H.: The presence of insertion elements IS1548 and IS861 in group B streptococci.Folia Microbiol. 48, 105–110 (2003).CrossRefGoogle Scholar
  13. Dmitriev A., Tkáčiková L’., Mikula I.:cpn60 gene based PCR identification of streptococcal species.Clin.Microbiol.Infectol. 10 (Suppl. 3), 520 (2004).Google Scholar
  14. Drozdova O.M., An R.N., Chanishvili T.G., Livshits M.L.: Experimental study of the interaction of phages and bacteria in the environment.Zh.Mikrobiol.Epidemiol.Imunobiol. 7, 35–39 (1988).Google Scholar
  15. Firth N., Apisiridej S., Berg T., O’Rourke B.A., Curnock S., Dyke K.G., Skurray R.A.: Republication of staphylococcal multiresistance plasmids.J.Bacteriol. 182, 2170–2178 (2000).PubMedCrossRefGoogle Scholar
  16. Godány A., Bukovská G., Farkašovská J., Brnáková Z., Dmitriev A., Tkáčiková L’., Ayele T., Mikula I.: Characterization of a complex restriction-modification system detected inStaphylococcus aureus andStreptococcus agalactiae strains isolated from infections of domestic animals.Folia Microbiol. 49, 307–314 (2004).CrossRefGoogle Scholar
  17. Goering R.V., Ruff E.A.: Comparative analysis of conjugative plasmids mediating gentamicin resistance inStaphylococcus aureus.Antimicrob.Agents Chemother. 24, 450–452 (1983).PubMedGoogle Scholar
  18. d’Herelle F.: Sur un microbe invisible antagoniste des bacilles dysenteriques.C.R.Acad.Sci.Paris 165, 373 (1917).Google Scholar
  19. Levin B.R., Bull J.J.: Phage therapy revisited the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics.Am.Nat. 147, 881–896 (1996).CrossRefGoogle Scholar
  20. Merril C.R., Biswas B., Carlton R., Jensen N.C., Creed G.J., Zullo S., Adhya S.: Long-circulating bacteriophage as antibacterial agents.Proc.Nat.Acad.Sci.USA 16, 3188–3192 (1996).CrossRefGoogle Scholar
  21. Mlynarczyk G., Mlynarczyk A., Sawicka-Grzelak A., Osowiecki H.: Evaluation of the capacity of chromosomal genes of erythromycin resistance for translocation in hospital strains ofStaphylococcus aureus.Med.Dosw.Mikrobiol. 40, 181–186 (1988).PubMedGoogle Scholar
  22. Oktavcová B., Godány A., Pristaš P., Ševčíková B., Farkašovská J.: Isolation and characterization of the modification methylase M.SauLPI fromStreptomyces aureofaciens B-96.Nucl.Acids Res. 11, 4843–4844 (1993).CrossRefGoogle Scholar
  23. Maniatis T., Fritsch E.F., Sambrook J.:Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA) 1982.Google Scholar
  24. Noya F.J., Rench M.A., Metzger T.G., Colman G., Naidoo J., Baker C.J.: Unusual occurrence of an epidemic of type Ib/c group B streptococcal sepsis in a neonatal intensive care unit.J.Infect.Dis. 155, 1135–1144 (1987).PubMedGoogle Scholar
  25. Sergeev N., Volokhov D., Chizhikov V., Rasooly A.: Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligonucleotide microarray assay.J.Clin.Microbiol. 42, 2134–2143 (2004).PubMedCrossRefGoogle Scholar
  26. Shakleina E., Dmitriev A., Tkáčiková L’. Suvorov A., Mikula I., Totolian A.: Presence of insertion sequences (IS elements) in group B streptococci of bovine origin.Indian J.Med.Res. 119, 242–246 (2004).PubMedGoogle Scholar
  27. Slopek S., Durlakova I., Weber-Dabrowska B., Kucharewica-Krukowska A., Dabrowski M., Bisikiewicz R.: Results of bacteriophage treatment of supportive bacterial infections — I. General evaluation of the results.Arch.Immunol.Ther.Exp. 31, 267–291 (1981).Google Scholar
  28. Slopek S., Durlakova I., Weber-Dabrowska B., Dabrowski M., Kucharewica-Krukowska A.: Results of bacteriophage treatment of suppurative bacterial infections — III. Detailed evaluation of the results obtained in further 150 cases.Arch.Immunol.Ther.Exp. 32, 317–335 (1984).Google Scholar
  29. Slopek S., Kucharewicz-Krukowska A., Weber-Dabrowska B., Dabrowski M.: Results of bacteriophage treatment of suppurative bacterial infections. IV. Evaluation of the results obtained in 370 cases.Arch.Immunol.Ther.Exp. 33, 219–240 (1985).Google Scholar
  30. Smith H.W., Huggins R.B.: Successful treatment of experimentalEscherichia coli infections in mice using phage: its general superiority over antibiotics.J.Gen.Microbiol. 128, 307–318 (1982).PubMedGoogle Scholar
  31. Smith H.W., Huggins R.B.: Effectiveness of phages in treating experimentalEscherichia coli diarrhea in calves, piglets and lambs.J.Gen.Microbiol. 129, 2659–2675 (1983).PubMedGoogle Scholar
  32. Smith H.W., Huggins M.B., Shaw K.M.: Factors influencing the survival and multiplication of bacteriophages in calves and in their environment.J.Gen.Microbiol. 133, 1127–1135 (1987a).PubMedGoogle Scholar
  33. Smith H.W., Huggins M.B., Shaw K.M.: The control of experimentalEscherichia coli diarrhea in calves by means of bacteriophages.J.Gen.Microbiol. 133, 1111–1126 (1987b).PubMedGoogle Scholar
  34. Soothill J.S.: Treatment of experimental infections of mice with bacteriophages.Med.Microbiol. 37, 258–261 (1992).Google Scholar
  35. Stringer J.: The development of a phage-typing system for group-B streptococci.J.Med.Microbiol. 13, 133–143 (1980).PubMedCrossRefGoogle Scholar
  36. Sulakvelidze A., Alavidze Z., Morris J.G. Jr.: Bacteriophage therapy.Antimicrob.Agents Chemother. 45, 649–659 (2001).PubMedCrossRefGoogle Scholar
  37. Sumers W.C.: Bacteriophage therapy.Ann.Rev.Microbiol. 55, 437–451 (2001).CrossRefGoogle Scholar
  38. Štepán R., Pantůček J., Doškař J.: Molecular diagnostics of clinically important staphylococci.Folia Microbiol. 49, 353–386 (2004).Google Scholar
  39. Tkáčiková L’., Tesfay A., Mikula I.: Detection of genes forStaphylococcus aureus enterotoxin by PCR.Acta Vet.Brno 72, 627–630 (2003).Google Scholar
  40. Tkáčiková L’., Mikula L, Dmitriev A.: Molecular epidemiology of group B streptococcal infectious.Folia Microbiol. 49, 387–397 (2004).Google Scholar
  41. Trieu-Cuot P., Gerbaud G., Lambert T., Courvalin P.:In vivo transfer of genetic information between Gram-positive and Gramnegative bacteria.EMBO J. 16, 3583–3587 (1985).Google Scholar
  42. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P.: Shuttle vectors containing a multiple cloning site and alacZ α gene for conjugal transfer of DNA fromEscherichia coli to Gram-positive bacteria.Gene 15, 99–104 (1991).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  1. 1.Institute of Molecular Biology, Member of the Centre of Excellence for Molecular MedicineSlovak Academy of SciencesBratislava 45Slovakia

Personalised recommendations