Folia Microbiologica

, Volume 49, Issue 5, pp 579–586 | Cite as

Development of an indirect competitive ELISA for detection ofCampylobacter jejuni subsp.jejuni O:23 in foods

  • I. Hochel
  • D. Viochna
  • J. Škvor
  • M. Musil


An indirect enzyme immunoassay for rapid detection ofCampylobacter jejuni subsp.jejuni O:23 has been developed. Optimum concentrations of immobilized cells, polyclonal chicken IgY, and rabbit anti-IgY antibody-horseradish peroxidase conjugate were 3.1 CFU/nL, 10 µg/mL, and 8 µg/mL, respectively. Under such conditions, the detection limit reached 50 CFU/µL, limit of quantification being 480 CFU/µL. By testing 5 chromogens.viz. 1,2-benzenediamine, 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid), 3,3′,5,5′-tetramethylbenzidine, bi(4,4′-anisidine) and 3-methyl-2-benzothiazolinone hydrazone, in horseradish peroxidase substrate, 1,2-benzenediamine or 3,3′,5,5′-tetramethylbenzidine as H-donors in the enzyme substrate provided the highest ELISA sensitivity. The applied polyclonal antibody was specific for homogeneous antigen. The cross-reactions were observed only with one strain ofC. sputorum subsp.sputorum (21.5 %) and with G+ bacteriumMicrococcus luteus (6.1 %). Preliminary tests have been performed with a limited number of artificially contaminated food samples. No matrix effects on the ELISA sensitivity were observed. The results (by means of ELISA) were comparable with those given by both a standard cultivation method performed according toČSN ISO 10272 and commercially available Singlepath® Campylobacter GLISA-Rapid Test.



2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)


bi(4,4′-anisidine) (3,3′-dimethoxybenzidine)




bovine serum albumin


3-dimethylaminobenzoic acid


horseradish peroxidase


3-methyl-2-benzothiazolinone hydrazone


phosphate buffered saline




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaser M.J., Cravens J., Powers B.W., Wang W.-L.L.:Campylobacter enteritidis associated with canine infection.Lancetii, 979–981 (1978).CrossRefGoogle Scholar
  2. Blaser M.J., Waldman R.J., Barrett T., Erlandson A.L.: Outbreaks ofCampylobacter enteritis in two extended families — evidence for person-to-person transmission.J.Pediatr.98, 254–257 (1981).PubMedCrossRefGoogle Scholar
  3. Birkenhead D., Hawkey P.M., Heritage J., Gascoyne-Binzi D.M., Kite P.: PCR for detection and typing ofCampylobacters.Lett.Appl.Microbiol.17, 235–237 (1993).PubMedCrossRefGoogle Scholar
  4. Bolton F.J., Hutchinson D.N., Coates D.: Blood-free selective medium for isolation ofCampylobacter jejuni from feces.J.Clin.Microbiol.19, 169–171 (1984).PubMedGoogle Scholar
  5. Bryan F.L., Doyle M.P.: Health risks and consequences ofSalmonella andCampylobacter jejuni in raw poultry.J.Food Protect.58, 326–344 (1995).Google Scholar
  6. ČSN ISO 10272: Microbiology of Food and Animal Stuffs — Horizontal Method for Detection of ThermotolerantCampylobacter (1997).Google Scholar
  7. Dedič K., Bockemuhl J., Kühn H., Volkmer K.-J., Weinke U.T.: Campylobacteriosen, pp. 49–65 inBakterielle Zoonosen Bei Tier und Mensch. Ferdinand-Enke-Verlag, Stuttgart 1993.Google Scholar
  8. Docherty L., Adams M.R., Patel P., McFadden J.: The magnetic immuno-polymerase chain reaction assay for the detection ofCampylobacter in milk and poultry.Lett.Appl.Microbiol.22, 288–292 (1996).PubMedCrossRefGoogle Scholar
  9. Hochel I., Jeníková G., Dursi C.F., Pazlarová J., Girotti S., Demnerová K.: Application of mouse antibodies to somatic antigen for detection ofSalmonella enteritidis by competitive ELISA.Food Agric.Immunol.13, 115–126 (2001).CrossRefGoogle Scholar
  10. Hodinka R.L., Gilligan P.H.: Evaluation of the Campyslide agglutination test for confirmatory identification of selectedCampylobacter species.J.Clin.Microbiol.26, 47–49 (1988).PubMedGoogle Scholar
  11. Humprey T.J.: Techniques for the optimum recovery of cold injuredCampylobacter jejuni from milk or water.J.Appl.Bacteriol.61, 125–132 (1986).Google Scholar
  12. Humprey T.J., Henley A., Lanning U.D.G.: The colonization of broiler chickens withCampylobacter jejuni; some epidemiological investigations.Epidemiol.Infect.110, 601–607 (1993).Google Scholar
  13. Jackson T.M., Marshall N.J., Etkins R.P.: Optimization of immunoradiometric (labelled antibody) assays, pp. 557–575 in W.M. Hunter, J.E.T. Corrie (Eds):Immunoassays for Clinical Chemistry. Churchill Livingstone, Edinburgh 1983.Google Scholar
  14. Jackson C.J., Fox A.J., Jones D.M.: A novel polymerase chain reaction assay for the detection and specification of thermophilicCampylobacter spp.J.Appl.Bacteriol.81, 467–473 (1996).PubMedGoogle Scholar
  15. Jacob L., Schmitt E., Bruemmer W.: Purification of antibodies by new chromatography techniques.Am.Biotechnol.Lab.12, 44–45 (1994).PubMedGoogle Scholar
  16. Karmali M.A., Simor A.E., Roscoe M., Fleming P.C., Smith S.S., Lane J.: Evaluation of blood-free, charcoal-based, selective medium for the isolation ofCampylobacter organisms from feces.J.Clin.Microbiol.23, 456–459 (1986).PubMedGoogle Scholar
  17. Karpinsky K.F.: Optimality assessment in the enzyme-linked immunosorbent assay (ELISA).Biometrics46, 381–390 (1990).CrossRefGoogle Scholar
  18. Lior H., Woodward D.L., Edgar J.A., Laroche L.J., Gill P.: Serotyping ofCampylobacter jejuni by slide agglutination based on heat-labile antigenic factors.J.Clin.Microbiol.15, 761–768 (1982).PubMedGoogle Scholar
  19. Lu P., Brooks B.W., Robertson R.H., Nielsen K.H., García M.M.: Characterization of monoclonal antibodies for the rapid detection of food borne campylobacters.Internat.J.Food Microbiol.37, 87–91 (1997).CrossRefGoogle Scholar
  20. Mentzing L.O.: Waterborne outbreaks ofCampylobacter enteritis in central Sweden.Lancetii, 352–354 (1981).CrossRefGoogle Scholar
  21. Mills S.D., Congi R.V., Hennessy J.N., Penner J.L.: Evaluation of a simplified procedure for serotypingCampylobacter jejuni andCampylobacter coli which is based on the O antigen.J.Clin.Microbiol.29, 2093–2098 (1991).PubMedGoogle Scholar
  22. Ng L.K., Kingombe I.B., Yan W., Taylor D.E., Hiratsuka K., García M.M.: Specific detection and confirmation ofCampylobacter jejuni by DNA hybridization and PCR.Appl.Environ.Microbiol.63, 4558–4563 (1997).PubMedGoogle Scholar
  23. Nielsen E.M., Engberg J., Madsen M.: Distribution of serotypes ofCampylobacter jejuni andC. coli from Danish patients, poultry, cattle and swine.FEMS Immunol.Med.Microbiol.19, 47–56 (1997).PubMedGoogle Scholar
  24. Park C.E., Stankiewitz Z.K., Lovett J., Hunt J.: Incidence ofCampylobacter jejuni in fresh eviscerated whole market chickens.Can.J.Microbiol.27, 841–842 (1981).PubMedCrossRefGoogle Scholar
  25. Penner J.L., Hennessy J.N.: Passive hemagglutination technique for serotypingCampylobacter fetus subsp.jejuni on the basis of soluble heat-stable antigens.J.Clin.Microbiol.12, 732–737 (1980).PubMedGoogle Scholar
  26. Penner J.L., Hennessy J.N., Congi R.V.: Serotyping ofCampylobacter jejuni andCampylobacter coli on the basis of thermostable antigens.Eur.J.Clin.Microbiol.2, 378–383 (1983).PubMedCrossRefGoogle Scholar
  27. Porstmann T., Porstmann B.: Chromogenic substrates for enzyme immunoassay, pp. 57–84 inNonisotopic Immunoassay (T.T. Ngo, Ed.). Plenum Press, New York 1988.Google Scholar
  28. Porstmann T., Porstmann B., Wietschke R., von Baehr R., Egger E.: Stabilization of the substrate reaction of horseradish peroxidase witho-phenylenediamine in the immunoassay.J.Clin.Chem.Clin.Biochem.23, 41–44 (1985).PubMedGoogle Scholar
  29. Prusak-Sochaczewski E., Luong J.H.T.: An improved ELISA method for detection ofSalmonella typhimurium.J.Appl.Bacteriol.66, 127–135 (1989).PubMedGoogle Scholar
  30. Rice B.E., Rollins D.M., Mallinson E.T., Carr L., Joseph S.W.:Campylobacter jejuni in broiler chickens: colonization and humoral immunity following oral vaccination and experimental infection.Vaccine15, 1922–1932 (1997).PubMedCrossRefGoogle Scholar
  31. Robinson D.A., Jones D.M.: Milk-borneCampylobacter infection.Brit.Med.J.282, 1374–1376 (1981).CrossRefGoogle Scholar
  32. Skirrow M.B.:Campylobacter enteritis: a “new” disease.Brit.Med.J.2, 9–11 (1977).PubMedGoogle Scholar
  33. Skirrow M.B., Turnbull G.L., Walker R.E., Young S.E.J.:Campylobacter jejuni enteritis transmitted from cat to man.Lanceti, 1188 (1980).CrossRefGoogle Scholar
  34. Steinhauserová I., Fojtíková K., Klimeš J.: The incidence and PCR detection ofCampylobacter upsaliensis in dogs and cats.Lett.Appl.Microbiol.31, 209–212 (2000).PubMedCrossRefGoogle Scholar
  35. Studahl A., Andersson Y.: Risk factors for indigenousCampylobacter infections: a Swedish case-control study.Epidemiol.Infectol.125, 269–275 (2000).CrossRefGoogle Scholar
  36. Svedhem A., Norkrans G.:Campylobacter jejuni enteritis transmitted from cat to man.Lanceti, 713–714 (1980).Google Scholar
  37. Tijjsen P., Su D.-M., Kurstak E.: Rapid and sensitive heterologous enzyme immunoassays for densonucleosis virus (Parvoviridae).Arch.Virol.74, 277–291 (1982).CrossRefGoogle Scholar
  38. Wedderkopp A., Gradel K.O., Jørgensen J.C., Madsen M.: Pre-harvest surveillance ofCampylobacter andSalmonella in Danish broiler flocks: 2-year study.Internat.J.Food Microbiol.68, 53–59 (2001).CrossRefGoogle Scholar
  39. Wegmüller B., Lüthy J., Candrian U.: Direct polymerase chain reaction detection ofCampylobacter jejuni andCampylobacter coli in raw milk and dairy products.Appl.Environ.Microbiol.59, 2961–2965 (1993).Google Scholar
  40. Willis W.L., Murray C.:Campylobacter jejuni seasonal recovery observations of retail market broilers.Poultry Sci.76, 314–317 (1997).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • I. Hochel
    • 1
  • D. Viochna
    • 1
  • J. Škvor
    • 2
  • M. Musil
    • 1
  1. 1.Department of Biochemistry and MicrobiologyInstitute of Chemical TechnologyPrague 6Czechia
  2. 2.Department of Anthropology and Human Genetics, Faculty of ScienceCharles UniversityPrague 2Czechia

Personalised recommendations