Folia Microbiologica

, Volume 49, Issue 5, pp 519–525 | Cite as

Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters

  • O. Kinclová-Zimmermannová
  • H. Flegelová
  • H. Sychrová


A triple mutant strain ofSaccharomyces cerevisiae lacking its own Na+-ATPases and Na+/H+ antiporters (ena1–4Δ nha1Δ nhx1Δ) was used for the expression of theOryza sativa NHX1 gene encoding a putative vacuolar Na+/H+ exchanger. Upon expression in yeast cells, theOsNhx1p is not a transport system specific only for sodium cations but it has a broad substrate specificity for at least four alkali metal cations (Na+, Li+, K+ and Rb+) and is able to substitute for the endogenous yeastScNhx1 antiporter. Its activity contributes to sequestration of alkali metal cations in intracellular vesicles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apse M.P., Aharon G.S., Snedden W.A., Blumwald E.: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport inArabidopsis.Science285, 1256–1258 (1999).PubMedCrossRefGoogle Scholar
  2. Banuelos M.A., Rodriguez-Navarro A.: P-type ATPases mediate sodium and potassium effluxes inSchwanniomyces occidentalis.J.Biol.Chem.273, 1640–1646 (1998).PubMedCrossRefGoogle Scholar
  3. Banuelos M.A., Sychrová H., Bleykasten-Grosshans C., Souciet J.L., Potier S.: The Nha1 antiporter ofSaccharomyces cerevisiae mediates sodium and potassium efflux.Microbiology144, 2749–2758 (1998).PubMedCrossRefGoogle Scholar
  4. Blumwald E.: Sodium transport and salt tolerance in plants.Curr.Opin.Cell Biol.12, 431–434 (2000).PubMedCrossRefGoogle Scholar
  5. Bowers K., Levi B.P., Patel F.I., Stevens T.H.: The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeastSaccharomyces cerevisiae.Mol.Biol.Cell11, 4277–4294 (2000).PubMedGoogle Scholar
  6. Capieaux E., Vignais M.L., Sentenac A., Goffeau A.: The yeast H+-ATPase gene is controlled by the promoter binding factor TUF.J.Biol.Chem.264, 7437–7446 (1989).PubMedGoogle Scholar
  7. Darley C.P., Vanwuytswinkel O.C.M., Vanderwoude K., Mager W.H., Deboer A.H.:Arabidopsis thaliana andSaccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers.Biochem.J.351, 241–249 (2000).PubMedCrossRefGoogle Scholar
  8. Fukuda A., Yazaki Y., Ishikawa T., Koike S., Tanaka Y.: Na+/H+ antiporter in tonoplast vesicles from rice roots.Plant Cell Physiol.39, 196–201 (1998).Google Scholar
  9. Fukuda A., Nakamura A., Tanaka Y.: Molecular cloning and expression of the Na+/H+ exchanger gene inOryza sativa.Biochem.Biophys.Acta1446, 149–155 (1999).PubMedGoogle Scholar
  10. Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y.: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice.Plant Cell Physiol.45, 146–159 (2004).PubMedCrossRefGoogle Scholar
  11. Gaxiola R.A., Rao R., Sherman A., Grisafi P., Alper S.L., Fink G.R.: TheArabidopsis thaliana proton transporters. AtNhx1 and Avp1, can function in cation detoxification in yeast.Proc.Nat.Acad.Sci.USA96, 1480–1485 (1999).PubMedCrossRefGoogle Scholar
  12. Haro R., Garciadeblas B., Rodriguez-Navarro A.: A novel P-type ATPase from yeast involved in sodium transport.FEBS Lett.291, 189–191 (1991).PubMedCrossRefGoogle Scholar
  13. Hill J.E., Myers A.M., Koerner T.J., Tzagoloff A.: Yeast/E. coli shuttle vectors with multiple unique restriction sites.Yeast2, 163–167 (1986).PubMedCrossRefGoogle Scholar
  14. Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., O’Shea E.K.: Global analysis of protein localization in budding yeast.Nature425, 686–691 (2003).PubMedCrossRefGoogle Scholar
  15. Kinclova O., Ramos J., Potier S., Sychrová H.: Functional study of theSaccharomyces cerevisiae Nhalp C-terminus.Mol.Microbiol.40, 656–668 (2001).PubMedCrossRefGoogle Scholar
  16. Kinclova O., Potier S., Sychrová H.: Difference in substrate specificity divides the yeast alkali-metal-cation/H+ antiporters into two subfamilies.Microbiology148, 1225–1232 (2002).PubMedGoogle Scholar
  17. Madrid R., Gomez M.J., Ramos J., Rodriguez-Navarro A.: Ectopic potassium uptake intrk1 trk2 mutants ofSaccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential.J.Biol.Chem.273, 14838–14844 (1998).PubMedCrossRefGoogle Scholar
  18. Mansour M.M.F., Salama K.H.A., Almutawa M.M.: Transport proteins and salt tolerance in plants.Plant Sci.164, 891–900 (2003).CrossRefGoogle Scholar
  19. McCusker J.H., Perlin D.S., Haber J.E.: Pleiotropic plasma membrane ATPase mutations ofSaccharomyces cerevisiae.Mol.Cell. Biol.7, 4082–4088 (1987).PubMedGoogle Scholar
  20. Nass R., Cunningham K.W., Rao R.: Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance.J.Biol.Chem.272, 26145–26152 (1997).PubMedCrossRefGoogle Scholar
  21. Nass R., Rao R.: Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis.J.Biol.Chem.273, 21054–21060 (1998).PubMedCrossRefGoogle Scholar
  22. Nass R., Rao R.: The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock.Microbiology145, 3221–3228 (1999).PubMedGoogle Scholar
  23. Niu X., Bressan R.A., Hasegawa P.M., Pardo J.M.: Ion homeostasis in NaC1 stress environments.Plant Physiol.109, 735–742 (1995).PubMedGoogle Scholar
  24. Parks G.E., Dietrich M.A., Schumaker K.S.: Increased vacuolar Na+/H+ exchange activity inSalicornia bigeloviiTorr, in response to NaCl.J.Exp.Bot.53, 1055–1065 (2002).PubMedCrossRefGoogle Scholar
  25. Prior C., Potier S., Souciet J. L., Sychrová H.: Characterization of theNHA1 gene encoding a Na+/H+-antiporter of the yeastSaccharomyces cerevisiae.FEBS Lett.387, 89–93 (1996).PubMedCrossRefGoogle Scholar
  26. Quintero F.J., Blatt M.R., Pardo J.M.: Functional conservation between yeast and plant endosomal Na+/H+ antiporters.FEBS Lett.471, 224–228 (2000).PubMedCrossRefGoogle Scholar
  27. Quintero F.J., Ohta M., Shi H., Zhu J.K., Pardo J.M.: Reconstitution in yeast of theArabidopsis SOS signaling pathway for Na+ homeostasis.Proc.Nat.Acad.Sci.USA99, 9061–9066 (2002).PubMedCrossRefGoogle Scholar
  28. Rodriguez-Navarro A.: Potassium transport in fungi and plants.Biochim.Biophys.Acta1469, 1–30 (2000).PubMedGoogle Scholar
  29. Sambrook J., Fritsch E.F., Maniatis T.:Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.Google Scholar
  30. Shi H., Ishitani M., Kim C., Zhu J.-K.: TheArabidopsis thaliana salt tolerance geneSOSI encodes a putative Na+/H+ antiporter.Proc. Nat.Acad.Sci.USA97, 6896–6901 (2000).PubMedCrossRefGoogle Scholar
  31. Simon E., Clotet J., Calero F., Ramos J., Arino J.: A screening for high copy suppressors of thesit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation.J.Biol.Chem.276, 29740–29747 (2001).PubMedCrossRefGoogle Scholar
  32. Sychrová H., Ramirez J., Pena A.: Involvement of Nha1 antiporter in regulation of intracellular pH inSaccharomyces cerevisiae.FEMS Microbiol.Lett.171, 167–172 (1999).PubMedCrossRefGoogle Scholar
  33. Tester M., Davenport R.: Na+ tolerance and Na+ transport in higher plants.Ann.Bot.(London)91, 503–527 (2003).CrossRefGoogle Scholar
  34. Venema K., Quintero F.J., Pardo J.M., Donaire J.P.: TheArabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes.J.Biol.Chem.277, 2413–2418 (2002).PubMedCrossRefGoogle Scholar
  35. Wallis J.W., Chrebet G., Brodsky G., Rolfe M., Rothstein R.: A hyper-recombination mutation inS. cerevisiae identifies a novel eukaryotic topoisomerase.Cell58, 409–419 (1989).PubMedCrossRefGoogle Scholar
  36. Ward J.M., Hirschi K.D., Sze H.: Plants pass the sait.Trends Plant.Sci.8, 200–201 (2003).PubMedCrossRefGoogle Scholar
  37. Wieland J., Nitsche A.M., Strayle J., Steiner H., Rudolph H.K.: ThePMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane.EMBO J.14, 3870–3882 (1995).PubMedGoogle Scholar
  38. Woods R.A.: Response ofade2 mutants ofSaccharomyces cerevisiae to carbon dioxide.Mol.Gen.Genet.105, 314–316 (1969).PubMedCrossRefGoogle Scholar
  39. Xia T., Apse M.P., Aharon G.S., Blumwald E.: Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter inBeta vulgaris.Physiol.Plant116, 206–212 (2002).PubMedCrossRefGoogle Scholar
  40. Yokoi S., Quintero F.J., Cubero B., Ruiz M.T., Bressan R.A., Hasegawa P.M., Pardo J.M.: Differential expression and function ofArabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.Plant J.30, 529–539 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • O. Kinclová-Zimmermannová
    • 1
  • H. Flegelová
    • 1
  • H. Sychrová
    • 1
  1. 1.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czechia

Personalised recommendations